首页 > 其他分享 >Explaining Graph Neural Networks for Vulnerability Discovery

Explaining Graph Neural Networks for Vulnerability Discovery

时间:2025-01-12 09:01:55浏览次数:3  
标签:Explaining doi Neural Graph https org Networks

本篇论文题目为:Explaining Graph Neural Networks for Vulnerability Discovery

发表于CCS 2021

本文主要内容是介绍GNNs->前人对GNNs的应用与改进->提出一种对GNNs的评估解释

本文并未实际构建一种方法去进行漏洞挖掘,而侧重于对GNNs在漏洞挖掘中的应用

针对应用文献进行梳理:

漏洞挖掘常规方法:

  1. 白盒方法:CAM(Wenjie Yang, Houjing Huang, Zhang Zhang, Xiaotang Chen, Kaiqi Huang, and Shu Zhang. 2019. Towards Rich Feature Discovery With Class Activation Maps Augmentation for Person Re-Identification. (2019), 1389–1398. https://doi.org/ 10.1109/CVPR.2019.00148 )和综合梯度法(Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic Attribution for Deep Networks. arXiv:1703.01365 [cs.LG])
  2. 黑盒技术(CAM和综合梯度法已经被证明优于黑盒技术):Alexander Warnecke, Daniel Arp, Christian Wressnegger, and Konrad Rieck. 2020. Evaluating Explanation Methods for Deep Learning in Security. In 2020 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, Genoa, Italy, 158–174. https://doi.org/10.1109/EuroSP48549.2020.00018

漏洞挖掘特定于图的方法(专门为提供GNN见解而设计):

  1. GNNExplainer:Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. 2019.

GNN Explainer: A Tool for Post-hoc Explanation of Graph Neural Networks. CoRR abs/1903.03894 (2019). arXiv:1903.03894 http://arxiv.org/abs/1903.03894

  1. PGExplainer:Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen,

and Xiang Zhang. 2020. Parameterized Explainer for Graph Neural Network. arXiv:2011.04573 [cs.LG]

  1. Graph-LRP:Thomas Schnake, Oliver Eberle, Jonas Lederer,Shinichi Nakajima, Kristof T.

Schütt, Klaus-Robert Müller, and Grégoire Montavon. 2020. Higher-Order Expla[1]nations of Graph Neural Networks via Relevant Walks. arXiv:2006.03589 [cs.LG]

用于漏洞挖掘的代码图和组合图:

  1. 程序依赖图(PDG):Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program Dependence Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst. 9, 3 (July 1987), 319–349. https://doi.org/10.1145/24039.24041
  2. 代码特性图(CPG):

F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. 2014. Modeling and Discovering

Vulnerabilities with Code Property Graphs. In 2014 IEEE Symposium on Security

and Privacy. 590–604. https://doi.org/10.1109/SP.2014.44

  1. 代码合成图(CCG):

Sicong Cao, Xiaobing Sun, Lili Bo, Ying Wei, and Bin Li. 2021. BGNN4VD:

Constructing Bidirectional Graph Neural-Network for Vulnerability Detection.

Information and Software Technology 136 (2021), 106576. https://doi.org/10.1016/

j.infsof.2021.106576

除此之外,其余应用文献中有对GNN的改进以及对机器学习的改进等等。

标签:Explaining,doi,Neural,Graph,https,org,Networks
From: https://blog.csdn.net/XLYcmy/article/details/144940472

相关文章

  • 新模型设计:Hybrid Quantum-Classical Neural Network (HQCNN) for Image Classificati
    新模型设计:HybridQuantum-ClassicalNeuralNetwork(HQCNN)forImageClassification目录新模型设计:HybridQuantum-ClassicalNeuralNetwork(HQCNN)forImageClassification引言1.HybridQuantum-ClassicalNeuralNetwork简介2.HybridQuantum-Classi......
  • Unity URP Shader Graph 实现复古电视机效果
    想到一出实现一出的复古电视机效果实现。复古电视机效果显示展示:使用素材一张纹理需要放映的图片,一张遮罩贴图,一个电视机模型。UV使用Spherize模拟电视机球状显示屏。扫描线A效果扫描线B效果像素化/随机UV偏移屏幕做旧效果边缘变暗效果屏幕黑边效果自制一张合适......
  • CF1439B Graph Subset Problem
    GraphSubsetProblem题目链接。Problem\(T\)组数据。给你一个有\(n\)个顶点和\(m\)条边的无向图,和一个整数\(k\)。请你找到一个大小为\(k\)的团(称一个\(k\)个点的集合为团,当且仅当点集大小为\(k\),并且该子集的每两个顶点之间存在一条边)或一个非空的顶点子集,使该......
  • An introduction of planar graphs, 1-planar graphs and K5-minor free graphs
    Aplanargraphisagraphthatcanbedrawnonaplaneinsuchawaythatnoedgescrosseachother,andthisdrawingisaplanegraph.Forexample,inFigure1,thefirstgraphisacompletegraphoforder4,denotedbyK4,whichisplanargraph.Thes......
  • CTF 之 Crypto (Cryptography) 学习笔记
    CTF之Crypto(Cryptography)Chapter0.前置知识群(Group)给定一个集合\(G\neq\emptyset\)以及二元代数运算\(\circ\),若满足:封闭性(Closure):\(\forallu,v\inG\),\(u\circv\inG\);结合律(Associativity):\(\forallu,v,w\inG\),\((u\circv)\circw=u\circ(v......
  • 2023 ICPC 亚洲区域赛济南站 B. Graph Partitioning 2
    前言讲还是要多听,这个很重要啊思路赛时的思路不太正确啊容易想到树形\(\rm{dp}\),考虑令\(f_{u,i}\)表示对于\(u\)子树,拆分出一块包含\(u\)的大小为\(i\)的连通块的方案数考虑转移,类似树上背包\[f_{u,k}\gets\sum_{v\inson(u),i+j=k}f_{v,i}......
  • CF2057E2 Another Exercise on Graphs (hard version) 题解
    感觉和[NOI2018]归程有点像(?考虑对每个询问二分答案,设二分到的答案是\(x\),要判断路径上的\(k\)大值是否能不大于\(x\),只需先将价值不大于\(x\)的所有边的边权设为\(0\),其他边设为\(1\),跑一遍\(a\)到\(b\)的最短路,看最短路长度是否不大于\(k\)即可。因为\(x\)的......
  • Ultra-Low Precision 4-bit Training of Deep Neural Networks
    目录概主要内容Radix-4FP4formatGradScaleTwo-PhaseRounding(TPR)SunX.,WangN.,ChenC.,NiJ.,AgrawalA.,CuiX.,VenkataramaniS.andMaghraouiK.E.andSrinivasanV.Ultra-lowprecision4-bittrainingofdeepneuralnetworks.NeurIPS,2020.概本文......
  • Map Navigation System (Graph Algorithm)
    1.实验目的为了更好地理解图数据结构,例如最短路径算法和最小生成树算法。2.实验代码思路及算法复杂度分析Graph类:记录图的顶点,边等信息//GraphNoderecordGraphNode(intv,doubleweight){}​//EdgerecordGraphEdge(ints,intd,doubleweight){}​publiccl......
  • Scalable Methods for 8-bit Training of Neural Networks
    目录概RangeBatchNormalization代码BannerR.,HubaraI.,HofferE.andSoudryD.Scalablemethodsfor8-bittrainingofneuralnetworks.NeurIPS,2018.概本文针对BatchNorm模块在低精度(8-bit)的情况下进行一个合适的改进.RangeBatchNormalization对于......