首页 > 其他分享 >An introduction of planar graphs, 1-planar graphs and K5-minor free graphs

An introduction of planar graphs, 1-planar graphs and K5-minor free graphs

时间:2025-01-09 18:22:32浏览次数:1  
标签:planar introduction graph plane graphs edge minor

  1. A planar graph is a graph that can be drawn on a plane in such a way that no edges cross each other, and this drawing is a plane graph.

image

For example, in Figure 1, the first graph is a complete graph of order 4, denoted by K4, which is planar graph. The second graph is an embedding of the first graph, which is a plane graph.

  1. A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. Such a 1-planar drawing of G is called a 1-plane graph. Clearly, the family of 1-planar graphs is bigger than that of planar ones.

The following Figure 2 is a 1-planar graph which is constructed from a planar graph.
image

We can check that K5 and K3,3 (which is a complete bipartite graph) are minimal non-planar graph, but they are 1-planar graphs. Moreover, we can give 1-plane graphs of Petersen graph and 6-regular graph in Figure 3 and Figure 4, respectively.
image

image

  1. K5-minor free graphs

To identify nonadjacent vertices x and y of a graph G is to replace these vertices by a single vertex incident with all the edges which were incident in G with either x or y.

Let e = xy be an edge of a graph G = (V, E).

To contract an edge e of a graph G is todelete the edge and then (if the edge is a link) identify its ends. A graph H is a minor of a graph G if G has a subgraph contractible to H.

G is called H-minor free if G does not have H as a minor.

image

image

image

image

image
image

image

标签:planar,introduction,graph,plane,graphs,edge,minor
From: https://www.cnblogs.com/slnsf/p/18660684

相关文章

  • CF2057E2 Another Exercise on Graphs (hard version) 题解
    感觉和[NOI2018]归程有点像(?考虑对每个询问二分答案,设二分到的答案是\(x\),要判断路径上的\(k\)大值是否能不大于\(x\),只需先将价值不大于\(x\)的所有边的边权设为\(0\),其他边设为\(1\),跑一遍\(a\)到\(b\)的最短路,看最短路长度是否不大于\(k\)即可。因为\(x\)的......
  • ECSE 415 Introduction to Computer Vision
    IntroductiontoComputerVision(ECSE415)Assignment4:NeuralNetworksDEADLINE:November,3rdPleasesubmityourassignmentsolutionselectronicallyviathemyCoursesassignmentdropbox.ThesubmissionshouldincludeasingleJupyternotebook.Moredetai......
  • MongoDB 入门操作(Introduction to MongoDB Operations)
    MongoDB入门操作目录MongoDB是非关系型文档数据库的典型代表,非常适合写入大批量、高并发以及不规则的数据,因此广泛应用于爬虫开发的存储后端。✍当业务需求对联表查询不是很强烈,相反需要存储大量关联性不是很强的数据时,可以考虑使用MongoDB文档型数据库。在Mon......
  • CSC1001: Introduction to Computer Science
    CSC1001:IntroductiontoComputerScienceProgrammingMethodologyAssignment4Assignmentdescription:Thisassignmentwillbeworth10%ofthefinalgrade.Foreachquestion,writeyourcodeinthecorresponding.pyfile(i.e.,forquestion1,useq1.py).Once......
  • Introduction to gRPC
    IntroductiontogRPChttps://grpc.io/docs/what-is-grpc/introduction/ AnintroductiontogRPCandprotocolbuffers.ThispageintroducesyoutogRPCandprotocolbuffers.gRPCcanuseprotocolbuffersasbothitsInterfaceDefinitionLanguage(IDL)and......
  • 题解:CF1540A Great Graphs
    思路CF思维题。因为我们要让边权值最小,所以可以利用贪心思想先将数组\(d\)进行升序排序。然后再预处理出每一条边的权重。其次我们来想一下如何处理答案,因为这道题说图中不能出现负环和重边,所以我们可以通过加反方向负边的方法来解决这道题。因为对于一条边,这条边之后的所......
  • MATH2033 Introduction to Scientific Computation
    MATH2033IntroductiontoScientificComputation—Coursework2—Submissiondeadline:15:00Friday20December2024Thiscourseworkcontributes10%towardsyourmarkforthismodule.RulesItisnotpermittedtousegenerativeartificialintelligence(AI)......
  • SciTech-Logic:逻辑学-Introduction to Logic: Irvine - 5.5 传统对当方阵
    SciTech-Logic:逻辑学-IntroductiontoLogic:Irvine-5.5传统对当方阵5.5传统对当方阵到目前为止,对直言命题的分析使我们能够进一步研究这些直言命题之间的关系,这也转而为我们日常生活中的许多推理提供了可靠的基础。我们需要另一个技术术语即对当。具有相同主项和相同谓......
  • SciTech-Logic:逻辑学-Introduction to Logic: Irvine - 5.4 质、量 与 周延性
    SciTech-Logic:逻辑学-IntroductiontoLogic:Irvine-5.2ClassandStatement类与直言命题A.质我们已经看到,每个标准直言命题或是肯定或是否定了某类关系。如果一个命题肯定了类与类之间的包含关系,不管是全部地还是部分地肯定,那么,它的质就是肯定的。因此,A命题(“所有S是P......
  • SciTech-Logic:逻辑学-Introduction to Logic: Irvine - 5.2 Class and Statement 类
    类与直言命题亚里士多德三段论逻辑,主要探讨的是关于不同对象类之间相互关系的论证。Class:类Class类,指的是共有certainspecificproperty:某种特定属性的objects:所有对象的collection:汇集。第3章在解释词项内涵的定义时,已经简单地介绍过"class:类"这个概念。Relationso......