注:机翻,未校。
Basic Definitions and Examples
基本定义与示例
Definition 5:If a point of discontinuity a ∈ E a\in E a∈E of the function f : E → R f:E\to\mathbb{R} f:E→R is such that there exists a continuous function f ~ : E → R \tilde{f}:E\to\mathbb{R} f~:E→R such that f ∣ E \ a = f ~ ∣ E \ a f|_{E\backslash a}=\tilde{f}|_{E\backslash a} f∣E\a=f~∣E\a , then a a a is called a removable discontinuity of the function f f f .
定义 5:如果函数 f : E → R f:E\to\mathbb{R} f:E→R 存在不连续点 a ∈ E a\in E a∈E ,并且存在一个连续函数 f ~ : E → R \tilde{f}:E\to\mathbb{R} f~:E→R ,使得 f f f 在 E ∖ { a } E\setminus\{a\} E∖{a} (即集合 E E E 中去掉元素 a a a )上的限制等于 f ~ \tilde{f} f~ 在 E ∖ { a } E\setminus\{a\} E∖{a} 上的限制,那么 a a a 就被称作函数 f f f 的可去间断点。
Thus a removable discontinuity is characterized by the fact that the limit lim E ∋ x → a f ( x ) = A \lim_{E\ni x\to a}f(x)=A limE∋x→af(x)=A exists, but A ≠ f ( a ) A\neq f(a) A=f(a) , and it suffices to set
f
~
(
x
)
=
{
f
(
x
)
for
x
∈
E
,
x
≠
a
A
for
x
=
a
\tilde{f}(x)=\begin{cases} f(x) & \text{for }x\in E,x\neq a\\ A & \text{for }x = a \end{cases}
f~(x)={f(x)Afor x∈E,x=afor x=a
in order to obtain a function
f
~
:
E
→
R
\tilde{f}:E\to\mathbb{R}
f~:E→R that is continuous at
a
a
a .
因此,可去间断点的特点在于极限 lim E ∋ x → a f ( x ) = A \lim_{E\ni x\to a}f(x)=A limE∋x→af(x)=A 是存在的,但 A A A 不等于 f ( a ) f(a) f(a) ,并且只需设定
f ~ ( x ) = { f ( x ) 对于 x ∈ E 且 x ≠ a A 对于 x = a \tilde{f}(x)=\begin{cases} f(x) & \text{对于 }x\in E且x\neq a\\ A & \text{对于 }x = a \end{cases} f~(x)={f(x)A对于 x∈E且x=a对于 x=a
这样就能得到一个在 a a a 点连续的函数 f ~ : E → R \tilde{f}:E\to\mathbb{R} f~:E→R 。
Example 10:The function
f
(
x
)
=
{
sin
1
x
,
for
x
≠
0
0
,
for
x
=
0
f(x)=\begin{cases} \sin\frac{1}{x}, & \text{for }x\neq 0\\ 0, & \text{for }x = 0 \end{cases}
f(x)={sinx1,0,for x=0for x=0
is discontinuous at 0. Moreover, it does not even have a limit as
x
→
0
x\to 0
x→0 , since, as was shown Example 5 in Sect. 3.2.1,
lim
x
→
0
sin
1
x
\lim_{x\to 0}\sin\frac{1}{x}
limx→0sinx1 does not exist. The graph of the function
sin
1
x
\sin\frac{1}{x}
sinx1 is shown in Fig. 4.1.
例 10:函数
f
(
x
)
=
{
sin
1
x
,
当
x
≠
0
0
,
当
x
=
0
f(x)=\begin{cases} \sin\frac{1}{x}, & \text{当 }x\neq 0\\ 0, & \text{当 }x = 0 \end{cases}
f(x)={sinx1,0,当 x=0当 x=0
在
0
0
0 点是不连续的。而且,当
x
x
x 趋向于
0
0
0 时它甚至没有极限,因为正如在 3.2.1 节例 5 中所展示的那样,
lim
x
→
0
sin
1
x
\lim_{x\to 0}\sin\frac{1}{x}
limx→0sinx1 这个极限是不存在的。函数
sin
1
x
\sin\frac{1}{x}
sinx1 的图像如图 4.1 所示。
Examples 8, 9 and 10 explain the following terminology.
例 8、9 和 10 解释了以下术语。
Definition 6:The point
a
∈
E
a\in E
a∈E is called a discontinuity of first kind for the function
f
:
E
→
R
f:E\to\mathbb{R}
f:E→R if the following limits
2
^2
2 exist:
lim
E
∋
x
→
a
−
0
f
(
x
)
:
=
f
(
a
−
0
)
,
lim
E
∋
x
→
a
+
0
f
(
x
)
:
=
f
(
a
+
0
)
,
\lim_{E\ni x\to a - 0}f(x):=f(a - 0),\quad\lim_{E\ni x\to a + 0}f(x):=f(a + 0),
limE∋x→a−0f(x):=f(a−0),limE∋x→a+0f(x):=f(a+0),
but at least one of them is not equal to the value
f
(
a
)
f(a)
f(a) that the function assumes at
a
a
a .
定义 6:对于函数 f : E → R f:E\to\mathbb{R} f:E→R 来说,如果点 a ∈ E a\in E a∈E 满足以下极限 2 ^2 2 存在:
lim E ∋ x → a − 0 f ( x ) : = f ( a − 0 ) (这里 lim E ∋ x → a − 0 f ( x ) 表示 x 从 a 的左侧趋近于 a 时 f ( x ) 的极限,记为 f ( a − 0 ) ) , \lim_{E\ni x\to a - 0}f(x):=f(a - 0)\text{(这里}\lim_{E\ni x\to a - 0}f(x)\text{表示}x\text{从}a\text{的左侧趋近于}a\text{时}f(x)\text{的极限,记为}f(a - 0)\text{)}, limE∋x→a−0f(x):=f(a−0)(这里limE∋x→a−0f(x)表示x从a的左侧趋近于a时f(x)的极限,记为f(a−0)),
lim E ∋ x → a + 0 f ( x ) : = f ( a + 0 ) (表示 x 从 a 的右侧趋近于 a 时 f ( x ) 的极限,记为 f ( a + 0 ) ) , \lim_{E\ni x\to a + 0}f(x):=f(a + 0)\text{(表示}x\text{从}a\text{的右侧趋近于}a\text{时}f(x)\text{的极限,记为}f(a + 0)\text{)}, limE∋x→a+0f(x):=f(a+0)(表示x从a的右侧趋近于a时f(x)的极限,记为f(a+0)), 但至少其中一个极限值不等于函数 f f f 在 a a a 点所取的值 f ( a ) f(a) f(a) ,那么点 a a a 就被称为函数 f f f 的第一类间断点。
2 ^2 2 If a a a is a discontinuity, then a a a must be a limit point of the set E E E . It may happen, however, that all the points of E E E in some neighborhood of a a a lie on one side of a a a . In that case, only one of the limits in this definition is considered.
2 ^2 2 如果 a a a 是一个间断点,那么 a a a 必定是集合 E E E 的极限点。然而,有可能出现这样的情况:在 a a a 的某个邻域内,集合 E E E 中的所有点都位于 a a a 的一侧。在这种情况下,此定义中只考虑这两个极限(即左极限和右极限)中的一个。
Definition 7:If a ∈ E a\in E a∈E is a point of discontinuity of the function f : E → R f:E\to\mathbb{R} f:E→R and at least one of the two limits in Definition 6 does not exist, then a a a is called a discontinuity of second kind.
定义 7:如果 a ∈ E a\in E a∈E 是函数 f : E → R f:E\to\mathbb{R} f:E→R 的一个间断点,并且定义6中的两个极限(即左极限和右极限)至少有一个不存在,那么 a a a 就被称作第二类间断点。
Thus what is meant is that every point of discontinuity that is not a discontinuity of first kind is automatically a discontinuity of second kind.
这意味着,每一个不是第一类间断点的间断点,自然就属于第二类间断点。
Let us present two more classical examples.
让我们再给出两个经典的例子。
Example 11:The function
D
(
x
)
=
{
1
,
if
x
∈
Q
0
,
if
x
∈
R
\
Q
\mathcal{D}(x)=\begin{cases} 1, & \text{if }x\in\mathbb{Q}\\ 0, & \text{if }x\in\mathbb{R}\backslash\mathbb{Q} \end{cases}
D(x)={1,0,if x∈Qif x∈R\Q
is called the Dirichlet function.
3
^3
3
例11:函数
D
(
x
)
=
{
1
,
若
x
∈
Q
(
即
x
是
有
理
数
)
0
,
若
x
∈
R
∖
Q
(
即
x
是
无
理
数
)
\mathcal{D}(x)=\begin{cases} 1, & \text{若 }x\in\mathbb{Q}(即x是有理数)\\ 0, & \text{若 }x\in\mathbb{R}\setminus\mathbb{Q}(即x是无理数) \end{cases}
D(x)={1,0,若 x∈Q(即x是有理数)若 x∈R∖Q(即x是无理数)
被称作狄利克雷函数。 3 ^3 3
This function is discontinuous at every point, and obviously all of its discontinuities are of second kind, since in every interval there are both rational and irrational numbers.
这个函数在每一点都是不连续的,而且显然它所有的间断点都属于第二类间断点,因为在每一个区间内都既有有理数又有无理数。
Example 12:Consider the Riemann function 4 ^4 4
R ( x ) = { 1 n , if x = m n ∈ Q , where m n is in lowest terms , n ∈ N 0 , if x ∈ R \ Q \mathcal{R}(x)=\begin{cases} \frac{1}{n}, & \text{if }x=\frac{m}{n}\in\mathbb{Q},\text{ where }\frac{m}{n}\text{ is in lowest terms}, n\in\mathbb{N}\\ 0, & \text{if }x\in\mathbb{R}\backslash\mathbb{Q} \end{cases} R(x)={n1,0,if x=nm∈Q, where nm is in lowest terms,n∈Nif x∈R\Q
例 12:考虑黎曼函数 4 ^4 4
R ( x ) = { 1 n , 若 x = m n ∈ Q ( 即 x 是 有 理 数 , 且 m n 是 最 简 分 数 形 式 , n ∈ N ) 0 , 若 x ∈ R ∖ Q ( 即 x 是 无 理 数 ) \mathcal{R}(x)=\begin{cases} \frac{1}{n}, & \text{若 }x=\frac{m}{n}\in\mathbb{Q}(即x是有理数,且\frac{m}{n}是最简分数形式,n\in\mathbb{N})\\ 0, & \text{若 }x\in\mathbb{R}\setminus\mathbb{Q}(即x是无理数) \end{cases} R(x)={n1,0,若 x=nm∈Q(即x是有理数,且nm是最简分数形式,n∈N)若 x∈R∖Q(即x是无理数)
We remark that for any point a ∈ R a\in\mathbb{R} a∈R , any bounded neighborhood U ( a ) U(a) U(a) of it, and any number N ∈ N N\in\mathbb{N} N∈N , the neighborhood U ( a ) U(a) U(a) contains only a finite number of rational numbers m n \frac{m}{n} nm , m ∈ Z m\in\mathbb{Z} m∈Z , n ∈ N n\in\mathbb{N} n∈N , with n < N n < N n<N .
我们要指出的是,对于任意实数 a ∈ R a\in\mathbb{R} a∈R ,它的任意有界邻域 U ( a ) U(a) U(a) 以及任意自然数 N ∈ N N\in\mathbb{N} N∈N ,邻域 U ( a ) U(a) U(a) 中只包含有限个有理数 m n \frac{m}{n} nm (其中 m ∈ Z m\in\mathbb{Z} m∈Z , n ∈ N n\in\mathbb{N} n∈N 并且 n < N n < N n<N )。
By shrinking the neighborhood, one can then assume that the denominators of all rational numbers in the neighborhood (except possibly for the point a a a itself if a ∈ Q a\in\mathbb{Q} a∈Q ) are larger than N N N . Thus at any point x ∈ U ˙ ( a ) x\in\dot{U}(a) x∈U˙(a) we have ∣ R ( x ) ∣ < 1 / N |\mathcal{R}(x)| < 1/N ∣R(x)∣<1/N .
通过缩小这个邻域,我们可以假定邻域内(除了可能的点 a a a 本身,如果 a a a 是有理数的话)所有有理数的分母都大于 N N N 。因此,对于任意点 x ∈ U ˙ ( a ) x\in\dot{U}(a) x∈U˙(a) (这里 U ˙ ( a ) \dot{U}(a) U˙(a) 表示去心邻域),我们有 ∣ R ( x ) ∣ < 1 / N |\mathcal{R}(x)| < 1/N ∣R(x)∣<1/N 。
We have thereby shown that
lim x → a R ( x ) = 0 \lim_{x\to a}\mathcal{R}(x)=0 limx→aR(x)=0
at any point a ∈ R \ Q a\in\mathbb{R}\backslash\mathbb{Q} a∈R\Q . Hence the Riemann function is continuous at any irrational number. At the remaining points, that is, at points x ∈ Q x\in\mathbb{Q} x∈Q , the function is discontinuous, except at the point x = 0 x = 0 x=0 , and all of these discontinuities are discontinuities of first kind.
由此我们证明了,对于任意无理数点 a ∈ R ∖ Q a\in\mathbb{R}\setminus\mathbb{Q} a∈R∖Q ,都有 lim x → a R ( x ) = 0 \lim_{x\to a}\mathcal{R}(x)=0 limx→aR(x)=0 。因此,黎曼函数在任意无理数点处是连续的。在其余的点,也就是有理数点 x ∈ Q x\in\mathbb{Q} x∈Q 处,该函数是不连续的,除了 x = 0 x = 0 x=0 这一点,并且这些间断点都是第一类间断点。
3 ^3 3 P.G. Dirichlet (1805–1859) – great German mathematician, an analyst who occupied the post of professor ordinarius at Göttingen University after the death of Gauss in 1855.
3 ^3 3 P.G.狄利克雷(1805 - 1859)——伟大的德国数学家,分析学家,在1855年高斯去世后,他担任哥廷根大学正教授这一职位。
4 ^4 4 B.F. Riemann (1826–1866) – outstanding German mathematician whose ground-breaking works laid the foundations of whole areas of modern geometry and analysis.
4 ^4 4 B.F.黎曼(1826 - 1866)——杰出的德国数学家,他那些开创性的工作为现代几何和分析的多个领域奠定了基础。
via: Zorich
标签:mathbb,function,frac,函数,示例,text,间断,lim,cases From: https://blog.csdn.net/u013669912/article/details/145121180