微积分基本公式汇总
- 若 \(f(x) = x^n\),有 \(f'(x) = nx^{n - 1}\).
- \(\frac{d}{dx}(g(x) + h(x)) = \frac{dg}{dx} + \frac{dh}{dx}\).
- \(\frac{d}{dx}(g(x)h(x)) = g(x)h'(x) + h(x)g'(x)\)(左乘右导,右乘左导).
- \(\frac{d}{dx}(g(h(x))) = \frac{dg}{dh}(h(x))\frac{dh}{dx}(x)\).
- 若 \(f(x) = n^x\),有 \(f'(x) = \ln(n) \cdot n^x\).
- 洛必达法则:\(\displaystyle\lim_{x \to \infty} \cfrac{f(x)}{F(x)} = \lim_{x \to \infty} \cfrac{f'(x)}{F'(x)}\).
- 微积分基本定理:\(\displaystyle\int_{a}^b f(x) \cdot dx = F(b) - F(a)\).
- 函数 \(f(x)\) 在 \(x = x_0\) 处的泰勒级数为 \(\displaystyle \sum_{n = 0}^{\infty} \cfrac{f^{(n)}(x_0)}{n!} (x - x_0)^n\).