连分数
定义
设\(a_0,a_1,...,a_n,...\)是一个无穷实数序列,其中\(a_j>0,j≥1,n\)为非负整数。分数
称为有限连分数,如果\(a_0\)为整数,\(a_1...a_n\)为正整数,则称为有限简单连分数。当\(n→∞\)时,则分别称为连分数或简单连分数。上式通常记成\([a_0,a_1,...,a_m]\),当\(n→∞\)时又记成\([a_0,a_1,...]\)
渐近分数
\([a_0]=\frac{a_0}{1}, [a_0,a_1]=\frac{a_0a_1+1}{a_1}, [a_0,a_1,a_2]=\frac{a_2a_1a_0+a_2+a_0}{a_2a_1+1}, \ldots\)
定义
设\([a_0,a_1,\ldots a_k]=\frac{p_k}{q_k}\),则\(p_k\)和\(q_k\)是\(a_0,a_1,\ldots a_n\)的多项式,\(\frac{p_k}{q_k}(0\leq k\leq n)\)称为\([a_0,a_1,\ldots a_n]\)的第\(k\)个渐近分数。
定理1
设\(p_k/q_k\)是\([a0,a1,···,an]\)的第k个渐近分数,则
\(p_0=a_0,p_1=a_1a_0+1,p_k=a_kp_k-1+p_k-2(2≤k≤n);\)
\(q_0=1,q_1=a_1,\)
\(q_k=a_kq_k-1+q_k-2(2≤k≤n).\)
证明 对k用数学归纳法。k=0,1,2时容易验证其成立。假设k-1时成立即
\(p_{k-1}=a_{k-1}p_{k-2}+p_{k-3},q_{k-1}=a_{k-1}q_{k-2}+q_{k-3};\)
则
\(\frac{pk}{qk}=[a_0,a_1,···,a_{k-1},a_k]\)
\(=\left[a_{0}, a_{1}, \cdots, a_{k-2}, a_{k-1}+\frac{1}{a_{k}}\right]\)
\(=\frac{(a_{k-1}+\frac{1}{a_{k}}) p_{k-2}+p_{k-3}}{(a_{k-1}+\frac{1}{a_{k}}) q_{k-2}+q_{k-3}}\)
\(=\frac{a_{k}\left(a_{k-1} p_{k-2}+p_{k-3}\right)+p_{k-2}}{a_{k}\left(a_{k-1} q_{k-2}+q_{k-3}\right)+q_{k-2}}\)
\(=\frac{a_{k} p_{k-1}+p_{k-2}}{a_{k} q_{k-1}+q_{k-2}},\)
定理2
$ p_k与q_k如定理1,则 $
\(\frac{p_k}{q_k}-\frac{p_{k-1}}{q_{k-1}}=\frac{(-1)^{k-1}}{q_kq_{k-1}},(k\geqslant1),\quad(2)\)
\(\frac{p_k}{q_k}-\frac{p_{k-2}}{q_{k-2}}=\frac{(-1)^ka_k}{q_kq_{k-2}},(k\geqslant1).\quad(3)\)
定理3
若[\(a_0,a_1,...\)]是简单连分数,则
(1)当\(n>1\),则\(q_n≥q_{n-1}+1\),从而\(q_n≥n\);
(2)\(p_n/q_n\)为既约分数。
定理4
每个有理数都可以表示为有限简单连分数
且在规定下表示方法唯一
连分式
图中的文字是:
用连分数表示一般实数
设\(\alpha\)为一实数,通过下述方法得到一个连分数:
\(a_0=\left[\alpha\right]\)
\(a_1'=\frac{1}{\alpha-\left[\alpha\right]}\) \(a_1=\left[a_1'\right]\)
\(a_2'=\frac{1}{a_1'-\left[a_1'\right]}\) \(a_2=\left[a_2'\right]\)
…
\(a_n'=\frac{1}{a_{n-1}'-\left[a_{n-1}'\right]}\) \(a_n=\left[a'_n\right]\)
这样得到连分数\([a_0,a_1,a_2,\cdots]\)。它为简单连分数,且\([a_0,a_1,a_2,\cdots]=\lim_{n \to \infty}\frac{p_n}{q_n}\)。
定理6: 设α是任一实数, 则
(1) 若α是有理数, 则存在正整数N, 使得α= [a0, a1,...aN], 即α为有限简单连分数。
(2) 若α是无理数, 则对任意正整数n有, α-\(\frac{P_{n}}{q_{n} }\)=\(\frac{(-1)^{n}δ_{n} }{q_{n} q_{n+1} }\), 0<\(\delta _{n}\)<1.