首页 > 其他分享 >深度学习训练营(一)

深度学习训练营(一)

时间:2022-10-31 10:06:44浏览次数:45  
标签:loss 训练营 random 学习 深度 rm current price best


前言:​​pip install -U scikit-learn​​安装sklearn模块

文章目录

  • ​​x[:,0]和x[:,1] 理解和实例解析​​
  • ​​load_boston数据集​​
  • ​​zip函数​​
  • ​​关于loss函数理解​​
  • ​​First-Method: Random generation: get best k and best b​​
  • ​​2nd-Method: Direction Adjusting​​
  • ​​3nd-method梯度下降​​

x[:,0]和x[:,1] 理解和实例解析

x[m,n]是通过numpy库引用数组或矩阵中的某一段数据集的一种写法,

m代表第m维,n代表m维中取第几段特征数据。

通常用法:

x[:,n]或者x[n,:]

x[:,n]表示在全部数组(维)中取第n个数据,直观来说,x[:,n]就是取所有集合的第n个数据,

举例说明:
x[:,0]
import numpy as np

X = np.array([[0,1],[2,3],[4,5],[6,7],[8,9],[10,11],[12,13],[14,15],[16,17],[18,19]])
print X[:,0]
结果:
[ 0 2 4 6 8 10 12 14 16 18]

x[:,1]
import numpy as np

X = np.array([[0,1],[2,3],[4,5],[6,7],[8,9],[10,11],[12,13],[14,15],[16,17],[18,19]])
print X[:,1]
结果为:
[ 1 3 5 7 9 11 13 15 17 19]

扩展用法

x[:,m:n],即取所有数据集的第m到n-1列数据

例:输出X数组中所有行第1到2列数据

X = np.array([[0,1,2],[3,4,5],[6,7,8],[9,10,11],[12,13,14],[15,16,17],[18,19,20]])  
print X[:,1:3]
结果为:
[[ 1 2]
[ 4 5]
[ 7 8]
[10 11]
[13 14]
[16 17]
[19 20]]

load_boston数据集

通过​​print (data["DESCR"])​​查看数据集的详细介绍

Signature: load_boston(return_X_y=False)
Docstring:
Load and return the boston house-prices dataset (regression).

============== ==============
Samples total 506
Dimensionality 13
Features real, positive
Targets real 5. - 50.
============== ==============

Read more in the :ref:`User Guide <boston_dataset>`.

Parameters
----------
return_X_y : boolean, default=False.
If True, returns ``(data, target)`` instead of a Bunch object.
See below for more information about the `data` and `target` object.

.. versionadded:: 0.18

Returns
-------
data : Bunch
Dictionary-like object, the interesting attributes are:
'data', the data to learn, 'target', the regression targets,
'DESCR', the full description of the dataset,
and 'filename', the physical location of boston
csv dataset (added in version `0.20`).

(data, target) : tuple if ``return_X_y`` is True

.. versionadded:: 0.18

Notes
-----
.. versionchanged:: 0.20
Fixed a wrong data point at [445, 0].

Examples
--------
>>> from sklearn.datasets import load_boston
>>> X, y = load_boston(return_X_y=True)
>>> print(X.shape)

zip函数

zip函数接受任意多个(包括0个和1个)序列作为参数,返回一个tuple列表。具体意思不好用文字来表述,直接看示例:
1.

x = [1, 2, 3]

y = [4, 5, 6]

z = [7, 8, 9]

xyz = zip(x, y, z)

print (xyz)
结果为:
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]



x = [1, 2, 3]
y = [4, 5, 6, 7]
xy = zip(x, y)
print (xy)
结果:
[(1, 4), (2, 5), (3, 6)]

从这个结果可以看出zip函数的长度处理方式。



x = [1, 2, 3]
x = zip(x)
print (x)
运行的结果是:
[(1,), (2,), (3,)]
从这个结果可以看出zip函数在只有一个参数时运作的方式。



x = [1, 2, 3] 
y = [4, 5, 6]
z = [7, 8, 9]
xyz = zip(x, y, z)
u = zip(*xyz)
print (u)
运行的结果是:
[(1, 2, 3), (4, 5, 6), (7, 8, 9)]
一般认为这是一个unzip的过程,它的运行机制是这样的:
在运行zip(*xyz)之前,xyz的值是:[(1, 4, 7), (2, 5, 8), (3, 6, 9)]
那么,zip(*xyz) 等价于 zip((1, 4, 7), (2, 5, 8), (3, 6, 9))
所以,运行结果是:[(1, 2, 3), (4, 5, 6), (7, 8, 9)],python中的*号 删除可以看这里
注:在函数调用中使用*list/tuple的方式表示将list/tuple分开,作为位置参数传递给对应函数(前提是对应函数支持不定个数的位置参数)



x = [1, 2, 3]
r = zip(* [x] * 3)
print(r)
运行的结果是:

[(1, 1, 1), (2, 2, 2), (3, 3, 3)]

它的运行机制是这样的:
[x]生成一个列表的列表,它只有一个元素x
[x] * 3生成一个列表的列表,它有3个元素,[x, x, x]
zip(* [x] * 3)的意思就明确了,zip(x, x, x)

关于loss函数理解

l o s s = 1 n ∑ ( y i − y i ^ ) 2 loss = \frac{1}{n} \sum{(y_i - \hat{y_i})}^2 loss=n1​∑(yi​−yi​^​)2
l o s s = 1 n ∑ ( y i − ( k x i + b i ) ) 2 loss = \frac{1}{n} \sum{(y_i - (kx_i + b_i))}^2 loss=n1​∑(yi​−(kxi​+bi​))2
∂ l o s s ∂ k = − 2 n ∑ ( y i − ( k x i + b i ) ) x i \frac{\partial{loss}}{\partial{k}} = -\frac{2}{n}\sum(y_i - (kx_i + b_i))x_i ∂k∂loss​=−n2​∑(yi​−(kxi​+bi​))xi​
∂ l o s s ∂ k = − 2 n ∑ ( y i − y i ^ ) x i \frac{\partial{loss}}{\partial{k}} = -\frac{2}{n}\sum(y_i - \hat{y_i})x_i ∂k∂loss​=−n2​∑(yi​−yi​^​)xi​
∂ l o s s ∂ b = − 2 n ∑ ( y i − y i ^ ) \frac{\partial{loss}}{\partial{b}} = -\frac{2}{n}\sum(y_i - \hat{y_i}) ∂b∂loss​=−n2​∑(yi​−yi​^​)

First-Method: Random generation: get best k and best b

Python中可以用如下方式表示正负无穷:​​float("inf"), float("-inf")​

from sklearn.datasets import load_boston
import matplotlib.pyplot as plt
import random

data = load_boston()
X, y = data['data'], data['target']


# 生成面积与房价的散点图
def draw_rm_and_price():
plt.scatter(X[:, 5], y)


def price(rm, k, b):
"""f(x) = k * x + b"""
return k * rm + b


# 房价
X_rm = X[:, 5]
k = random.randint(-100, 100)
b = random.randint(-100, 100)
# price_by_random_k_and_b = [price(r, k, b) for r in X_rm]
# print(price_by_random_k_and_b)
# plt.scatter(X[:, 5], y)
# plt.scatter(X_rm, price_by_random_k_and_b)


# plt.show()


# to evaluate the performance
def loss(y, y_hat):
return sum((y_i - y_hat_i) ** 2 for y_i, y_hat_i in zip(list(y), list(y_hat))) / len(list(y))


trying_times = 2000

min_loss = float('inf')
best_k, best_b = None, None
for i in range(trying_times):
k = random.random() * 200 - 100
b = random.random() * 200 - 100
price_by_random_k_and_b = [price(r, k, b) for r in X_rm]

current_loss = loss(y, price_by_random_k_and_b)

if current_loss < min_loss:
min_loss = current_loss
best_k, best_b = k, b
print('When time is : {}, get best_k: {} best_b: {}, and the loss is: {}'.format(i, best_k, best_b, min_loss))

X_rm = X[:, 5]
k = best_k
b = -best_b
price_by_random_k_and_b = [price(r, k, b) for r in X_rm]

draw_rm_and_price()
plt.scatter(X_rm, price_by_random_k_and_b)
plt.show()

深度学习训练营(一)_数据集

2nd-Method: Direction Adjusting

from sklearn.datasets import load_boston
import matplotlib.pyplot as plt
import random

data = load_boston()
X, y = data['data'], data['target']


# 生成面积与房价的散点图
def draw_rm_and_price():
plt.scatter(X[:, 5], y)


def price(rm, k, b):
"""f(x) = k * x + b"""
return k * rm + b


# 房价
X_rm = X[:, 5]


# to evaluate the performance
def loss(y, y_hat): # to evaluate the performance
return sum((y_i - y_hat_i)**2 for y_i, y_hat_i in zip(list(y), list(y_hat))) / len(list(y))

trying_times = 20000

min_loss = float('inf')
best_k, best_b = random.random() * 200 - 100, random.random() * 200 - 100

direction =[
(+1, -1), # first element: k's change direction, second element: b's change direction
(+1, +1),
(-1, -1),
(-1, +1),
]

next_direction = random.choice(direction)

scalar = 0.05

update_time = 0

for i in range(trying_times):
k_direction, b_direction = next_direction
current_k, current_b = best_k + k_direction * scalar, best_b + b_direction * scalar
price_by_k_and_b = [price(r, current_k, current_b) for r in X_rm]
current_loss = loss(y, price_by_k_and_b)

# performance became better
if current_loss < min_loss:
min_loss = current_loss
best_k, best_b = current_k, current_b
next_direction = next_direction
update_time += 1

if update_time % 10 ==0:
print(
'When time is : {}, get best_k: {} best_b: {}, and the loss is: {}'.format(i, best_k, best_b, min_loss))
else:
next_direction = random.choice(direction)

X_rm = X[:,5]
k, b = best_k, best_b
price_by_random_k_and_b = [price(r, k, b) for r in X_rm]
draw_rm_and_price()
plt.scatter(X_rm, price_by_random_k_and_b)
plt.show()

深度学习训练营(一)_数组_02

如果我们想得到更快的更新,在更短的时间内获得更好的结果,我们需要一件事情:
找对改变的方向
如何找对改变的方向呢?
2nd-method: 监督让他变化–> 监督学习

3nd-method梯度下降

from sklearn.datasets import load_boston
import matplotlib.pyplot as plt
import random

data = load_boston()
X, y = data['data'], data['target']


# 生成面积与房价的散点图
def draw_rm_and_price():
plt.scatter(X[:, 5], y)


def price(rm, k, b):
"""f(x) = k * x + b"""
return k * rm + b


# 房价
X_rm = X[:, 5]


# to evaluate the performance
def loss(y, y_hat): # to evaluate the performance
return sum((y_i - y_hat_i) ** 2 for y_i, y_hat_i in zip(list(y), list(y_hat))) / len(list(y))


def partial_k(x, y, y_hat):
n = len(y)
gradient = 0
for x_i, y_i, y_hat_i in zip(list(x), list(y), list(y_hat)):
gradient += (y_i - y_hat_i) * x_i

return -2 / n * gradient


def partial_b(x, y, y_hat):
n = len(y)
gradient = 0
for y_i, y_hat_i in zip(list(y), list(y_hat)):
gradient += (y_i - y_hat_i)
return -2 / n * gradient


trying_times = 100000

X, y = data['data'], data['target']

min_loss = float('inf')

current_k = random.random() * 200 - 100
current_b = random.random() * 200 - 100
best_k = random.random() * 200 - 100
best_b = random.random() * 200 - 100
learning_rate = 1e-03
update_time = 0
for i in range(trying_times):
price_by_k_and_b = [price(r, current_k, current_b) for r in X_rm]
current_loss = loss(y, price_by_k_and_b)
if current_loss < min_loss:
min_loss = current_loss
if i % 50 == 0:
print(
'When time is : {}, get best_k: {} best_b: {}, and the loss is: {}'.format(i, best_k, best_b, min_loss))

k_gradient = partial_k(X_rm, y, price_by_k_and_b)
b_gradient = partial_b(X_rm, y, price_by_k_and_b)
# 如果k大于0说明在增加要防止增加就要让k减小,k小于0也是这样所以前面加上-1
current_k = current_k + (-1 * k_gradient) * learning_rate
current_b = current_b + (-1 * b_gradient) * learning_rate

X_rm = X[:, 5]
k, b = current_k, current_b
price_by_random_k_and_b = [price(r, k, b) for r in X_rm]
draw_rm_and_price()
plt.scatter(X_rm, price_by_random_k_and_b)
plt.show()


标签:loss,训练营,random,学习,深度,rm,current,price,best
From: https://blog.51cto.com/u_15847702/5808269

相关文章

  • PHP反序列化字符逃逸学习
    文章目录​​过滤后字符变多​​​​过滤后字符变少​​过滤后字符变多首先给出本地的php代码,很简单不做过多的解释,就是把反序列化后的一个x替换成为两个<?phpfunctionchan......
  • 矢量&凸包学习笔记
    矢量&凸包学习笔记矢量矢量(向量)的定义和表示法定义:一条有方向的线段。表示:如下图。那么我们把这一条矢量写作:\(\overrightarrow{AB}\),它的长度为\(a\),记作\(\left|\o......
  • 深度监视(watch)
    <!DOCTYPEhtml><html> <head> <metacharset="utf-8"> <title></title> <!-- 1.深度监视: 1.vue中的watch默认不检测对象内部值的改变 2.配置deep:true可以监......
  • 基于形成性评估的移动学习方法,以改善学生的学习态度和成绩
    基于形成性评估的移动学习方法,以改善学生的学习态度和成绩(Aformativeassessment-basedmobilelearningapproachtoimprovingthelearningattitudesandachieveme......
  • 半平面交学习笔记
    半平面交学习笔记半平面半平面:一条直线把一个平面分成的两个平面,如图,直线\(AB\)把平面分成左(上)半平面和右(下)半平面的两个平面。那我们如何判断是在哪一个平面呢?有两种......
  • 【学习笔记】《范围修改查询问题》
    参考自APIO2022清华大学李欣隆的课件《范围修改查询问题》。其实感觉目前实用性不强(问题描述给定集合\(I\),令\(n=|I|\)。给定交换半群\((D,+)\),半群\((M,*)\)。......
  • dubbo学习笔记
    Dubbo背景和简介Dubbo开始于电商系统,因此在这里先从电商系统的演变讲起。单一应用框架(ORM)当网站流量很小时,只需一个应用,将所有功能如下单支付等都部署在一起,以减少......
  • HCIA学习笔记三十六:OSPF中的DR和BDR的选举过程
    一、DR和BDR的选举•上一节中,AR1和AR2是Priority都是等于1的情况下,AR2的RouterID:2.2.2.2明显大于AR1的RouterID:1.1.1.1,为什么AR1反而成了DR而AR2成了BDR呢?这个其实......
  • Spring-day01 spring全家桶,如何学习框架,单元测试
    Spring学习-概述1.spring全家桶:spring,springmvc,springboot,springcloudspring:出现是在2002左右,解决企业开发的难度。减轻对项目模块之间的管理,类和类之间的......
  • 适配器设计模式学习
    转自:https://www.runoob.com/design-pattern/adapter-pattern.html1.介绍将一个类的接口转换成客户希望的另外一个接口。适配器模式使得原本由于接口不兼容而不能一起工......