首页 > 其他分享 >损失的计算

损失的计算

时间:2024-12-13 22:15:43浏览次数:7  
标签:src confidence loss trajectory self 损失 item 计算

数据格式

Based on the provided code and data, let me explain how the trajectory data is preprocessed in the TrajectoryLoader class:

  1. Data Loading and Label Processing:
  • The data is loaded from a pickle file containing trajectory information
  • Each trajectory consists of GPS coordinates that have been mapped to node IDs
  • The class adds three special tokens:
    def bos_eos_pad(self):
        self.bos = self.label_num-3  # Beginning of sequence token
        self.eos = self.label_num-2  # End of sequence token
        self.pad = self.label_num-1  # Padding token
    
  1. Batch Processing:
  • For each trajectory in a batch, the following processing is done:
    # Original trajectory becomes source sequence
    src_batch.append(item)
    
    # Target sequence gets BOS token prepended and EOS token appended
    trg_batch.append([self.bos] + deepcopy(item) + [self.eos])
    
  1. Length Handling and Padding:
  • The code tracks original lengths:
    src_length.append(len(item))  # Source sequence length
    trg_length.append(len(trg_batch[-1]))  # Target sequence length (including BOS/EOS)
    
  • Sequences in a batch are padded to the same length:
    # Pad source sequences
    for item in src_batch:
        item += [self.pad] * (max_length - len(item))
        
    # Pad target sequences (which include BOS/EOS)
    for item in trg_batch:
        item += [self.pad] * (max_length + 2 - len(item))
    
  1. Final Data Structure:
  • Source sequences: Original trajectory + padding
  • Target sequences: [BOS] + trajectory + [EOS] + padding
  • The loader keeps track of actual sequence lengths for both source and target

So to directly answer your questions:

  • Yes, it inserts labels:
    • BOS (Beginning of Sequence) token at the start of target sequences
    • EOS (End of Sequence) token at the end of target sequences
    • PAD tokens to make all sequences in a batch the same length
  • The special tokens are positioned at:
    • label_num-3: BOS token
    • label_num-2: EOS token
    • label_num-1: PAD token

This preprocessing enables the transformer model to:

  • Know where sequences start (BOS)
  • Know where sequences end (EOS)
  • Handle variable-length sequences in batches (PAD)
  • Generate proper autoregressive predictions during training and inference

confidence loss 只包含正常路径的计算

Let me analyze how the confidence KL loss is calculated in the TransformerTrajectoryModel and whether it includes the special tokens (BOS, EOS, PAD):

Looking at the confidence computation in TransformerTrajectoryModel:

def compute_confidence(self, h, src):
    # Encode and transform the input
    encoded = self.confidence_encoder(h)
    transformed = self.confidence_transformer(encoded)
    
    # Get distribution parameters
    mu = self.confidence_mu(transformed)
    logvar = self.confidence_logvar(transformed)
    sigma = torch.exp(0.5 * logvar)
    
    # Sample and decode
    q_z = torch.distributions.Normal(mu, sigma)
    z = q_z.rsample()
    decoded = self.confidence_decoder(z)
    logits = self.output_projection1(decoded)
    log_probs = torch.log_softmax(logits, dim=-1)
    
    # Reshape for loss calculation
    batch_size, seq_len = src.shape
    log_probs_flat = log_probs.reshape(batch_size * seq_len, -1)
    src_flat = src.reshape(-1)
    
    # Calculate NLL loss with padding mask
    nll_loss = self.nll(log_probs_flat, src_flat)
    nll_loss = nll_loss.reshape(batch_size, seq_len)
    
    # Important part: Create mask to ignore padding
    mask = (src != self.num_nodes-1).float()  # Ignore PAD tokens
    nll_loss = (nll_loss * mask).sum(dim=1) / mask.sum(dim=1).clamp(min=1e-8)

Key observations:

  1. The confidence computation uses the source sequence (src), which does NOT include BOS or EOS tokens - it's the original trajectory with only padding

  2. The masking explicitly handles PAD tokens:

mask = (src != self.num_nodes-1).float()  # Masks out PAD tokens only
  1. The NLL loss is computed only on the actual trajectory nodes, as it uses the source sequence (src) as the target, not the target sequence that would contain BOS/EOS

  2. The KL divergence is calculated on the entire latent distribution but is also scaled by the mask:

kl_div = torch.distributions.kl_divergence(q_z, prior)
kl_div = kl_div.mean(dim=-1)
kl_div = (kl_div * mask).sum(dim=1) / mask.sum(dim=1).clamp(min=1e-8)

So to directly answer:

  • BOS: Not included in confidence loss computation
  • EOS: Not included in confidence loss computation
  • PAD: Explicitly masked out and not included in the loss

The confidence VAE only tries to reconstruct the actual trajectory points, ignoring all special tokens. This makes sense because the confidence measure should be about how well the model can reconstruct the actual movement patterns, not the artificial tokens we add for the transformer sequence processing.

Let me check the data loading and trajectory handling to determine if src includes the destination.

Looking at the provided sample data in the first document:

# From the example trajectory data structure:
'n_geo': [[104.07337, 30.68815], [104.07319, 30.68815], ..., [104.073, 30.65492]]

# In TrajectoryLoader.load_data:
def load_data(self, trajectory_path, node2id):
    dataset = pickle.load(open(trajectory_path, 'rb'))
    self.data = []
    for line in dataset.values():
        traj = line['n_geo']  # Takes the n_geo field directly
        item = []
        for node in traj:
            item.append(node2id[str(node)])
        self.data.append(item)

And looking at how src is created:

# In TrajectoryLoader.batch_preprocess:
src_batch = []
for item in cur_batch:
    src_length.append(len(item))
    src_batch.append(item)  # Direct use of the trajectory

From this code, we can see that:

  1. src includes ALL points from the n_geo field of the trajectory data
  2. Looking at the sample data, n_geo contains the complete trajectory including the destination point
  3. The destination point [104.073, 30.65492] is included as the last point in the trajectory

Therefore, yes, src does include the destination point. It contains the complete trajectory from start to finish, before any special tokens (BOS/EOS) are added. The confidence computation would thus work on reconstructing the entire path including the destination.

The way it works is:

  • src: [start_point, ..., intermediate_points, ..., destination_point] + padding
  • trg: [BOS, start_point, ..., intermediate_points, ..., destination_point, EOS] + padding

The confidence VAE tries to reconstruct the entire source sequence, including both the starting point and the destination point.

vae loss 包含vae_kl + sd_loss + nll_loss

then in the rest, it seems to input the start_point and destination_point, it will get three loss, one is vae_kl + sd_loss + nll_loss. in this part, I am also wondering if BOS, EOS, and the padding participate into the calculation

标签:src,confidence,loss,trajectory,self,损失,item,计算
From: https://www.cnblogs.com/GraphL/p/18605962

相关文章

  • 转载:【AI系统】计算与调度
    上一篇我们了解了什么是算子,神经网络模型中由大量的算子来组成,但是算子之间是如何执行的?组成算子的算法逻辑跟具体的硬件指令代码之间的调度是如何配合?计算与调度计算与调度的来源图像处理在当今物理世界中是十分基础且开销巨大的计算应用。图像处理算法在实践中需要高效的实现......
  • 转载:【AI系统】昇腾异构计算架构 CANN
    本文将介绍昇腾AI异构计算架构CANN(ComputeArchitectureforNeuralNetworks),这是一套为高性能神经网络计算需求专门设计和优化的架构。CANN包括硬件层面的达·芬奇架构和软件层面的全栈支持,旨在提供强大的硬件基础和管理网络模型、计算流及数据流的软件栈,以支撑神经网络在异......
  • 《计算机基础与程序设计》第12周学习总结
    学期(如2024-2025-15)学号(如:20241404)《计算机基础与程序设计》第12周学习总结作业信息这个作业属于哪个课程https://edu.cnblogs.com/campus/besti/2024-2025-1-CFAP/这个作业要求在哪里https://msg.cnblogs.com/item/4306363这个作业的目标作业正文https://w......
  • GPU加速主要通过并行化计算任务,适合大规模数据处理和计算密集型应用。 多线程并发适用
    GPU加速和多线程并发是提高计算密集型任务性能的两种重要技术。它们在不同领域(如深度学习、科学计算、图像处理等)得到了广泛应用。下面,我将详细介绍这两者的概念、原理、以及如何结合它们进行高效计算。1. GPU加速1.1 GPU加速的基本原理GPU(图形处理单元)最初设计用于图像和视......
  • 云计算学习
    交换机:1.应用层2.表示层3.介质层4.网络层一.交换机有记录单播,无记录则泛洪,泛洪区域越大则越卡,应用层:人机交互----抽象语言-----编码2.表示从:编码------二进制3.介质访问控制层:4.物理层:“算盘”中继器-------从物理层面增加电压 当传输距离过长时会导致波形失......
  • C++ 计算日期差
     #include<iostream>usingnamespacestd;//定义日期结构体,用于存放年、月、日这三个日期相关的信息structDate{intyear;intmonth;intday;};intmain(){Dated1,d2;//从标准输入(控制台)读取第一个日期的年、月、日信息cin>>d......
  • 深入计算机语言之C++:STL之list的模拟实现
    ......
  • 转载:【AI系统】CPU 计算本质
    本文将深入探讨CPU的计算性能,从算力的敏感度和不同技术趋势中分析影响CPU性能的关键因素。我们将通过数据和实例,详细解释CPU算力的计算方法、算力与数据加载之间的平衡点,以及如何通过算力敏感度分析来识别和优化计算系统中的性能瓶颈。此外,我们还将观察服务器、GPU和超级计......
  • 转载:【AI系统】CPU 计算时延
    CPU(中央处理器)是计算机的核心组件,其性能对计算机系统的整体性能有着重要影响。CPU计算时延是指从指令发出到完成整个指令操作所需的时间。理解CPU的计算时延对于优化计算性能和设计高效的计算系统至关重要。在本文中我们将要探讨CPU的计算时延组成和影响时延产生的因素,并深入......
  • 转载:【AI系统】超异构计算
    在本文中我们要从更远的视角来看看计算机架构发展的黄金10年,主要将围绕异构计算和超异构来展开。在开始具体内容前,我们非常推荐您观看以下两个视频:计算机架构的新黄金时代:ANewGoldenAgeforComputerArchitecture编译器的黄金时代:TheGoldenAgeofCompilerDesigni......