首页 > 其他分享 >【自然语言处理(NLP)】基于FNN网络的电影评论情感分析

【自然语言处理(NLP)】基于FNN网络的电影评论情感分析

时间:2022-10-30 20:34:56浏览次数:106  
标签:NLP paddle label train dict print FNN model 自然语言

文章目录

  • ​​【自然语言处理(NLP)】基于FNN网络的电影评论情感分析​​
  • ​​前言​​
  • ​​(一)、任务描述​​
  • ​​(二)、环境配置​​
  • ​​一、IMDB数据准备​​
  • ​​(一)、参数设置​​
  • ​​(二)、用padding的方式对齐数据​​
  • ​​(三)、用Dataset 与 DataLoader 加载​​
  • ​​二、模型配置​​
  • ​​三、模型训练​​
  • ​​四、模型评估​​
  • ​​五、模型预测​​
  • ​​总结​​

前言

(一)、任务描述

传统的文本分类模型一般根据文本的内容人工地构造特征,而人工构建特征存在考虑片面、浪费人力等现象。

本实践使用基于前馈神经网络(FNN)的电影评论情感分析模型,将电影评论文本中的情感极性向量化,通过前馈神经网络的学习训练来挖掘表示文本深层的特征,避免了特征构建的问题,并能发现那些不容易被人发现的特征,从而产生更好的效果。

【自然语言处理(NLP)】基于FNN网络的电影评论情感分析_情感分析


(二)、环境配置

本实践代码运行的环境配置如下:Python版本为3.7,PaddlePaddle版本为2.0.0,操作平台为AI Studio。大部分深度学习项目都要经过以下几个过程:数据准备、模型配置、模型训练、模型评估。

import paddle
import numpy as np
import matplotlib.pyplot as plt
print(paddle.__version__)

# cpu/gpu环境选择,在 paddle.set_device() 输入对应运行设备。
# device = paddle.set_device('gpu')

一、IMDB数据准备

IMDB数据集是一个对电影评论标注为正向评论与负向评论的数据集,共有25000条文本数据作为训练集,25000条文本数据作为测试集。
该数据集的官方地址为:

​http://ai.stanford.edu/~amaas/data/sentiment/

print('loading dataset...')
train_dataset = paddle.text.datasets.Imdb(mode='train')
test_dataset = paddle.text.datasets.Imdb(mode='test')
print('loading finished')

部分输出如下图1所示:

【自然语言处理(NLP)】基于FNN网络的电影评论情感分析_FNN_02

train_dataset.docs[0]

部分输出如下图2所示:

【自然语言处理(NLP)】基于FNN网络的电影评论情感分析_自然语言处理_03

构建了训练集与测试集后,可以通过 word_idx 获取数据集的词表。在飞桨框架2.0版本中,推荐使用padding的方式来对同一个batch中长度不一的数据进行补齐,所以在字典中,我们还会添加一个特殊的词,用来在后续对batch中较短的句子进行填充。

word_dict = train_dataset.word_idx

# add a pad token to the dict for later padding the sequence
word_dict['<pad>'] = len(word_dict)

for k in list(word_dict)[:10]:
print("{}:{}".format(k.decode('ASCII'), word_dict[k]))

print("...")

for k in list(word_dict)[-5:]:
print("{}:{}".format(k if isinstance(k, str) else k.decode('ASCII'), word_dict[k]))

print("totally {} words".format(len(word_dict)))

输出结果如下图3所示:

【自然语言处理(NLP)】基于FNN网络的电影评论情感分析_自然语言处理_04


(一)、参数设置

在这里我们设置一下词表大小,​​embedding​​​的大小,​​batch_size​​等等

vocab_size = len(word_dict) + 1
emb_size = 256
seq_len = 200
batch_size = 32
epochs = 2
pad_id = word_dict['<pad>']

classes = ['negative', 'positive']

def ids_to_str(ids):
words = []
for k in ids:
w = list(word_dict)[k]
words.append(w if isinstance(w, str) else w.decode('ASCII'))
return " ".join(words)

在这里,取出一条数据打印出来看看,可以用 docs 获取数据的list,用 labels 获取数据的label值,打印出来对数据有一个初步的印象。

# 取出来第一条数据看看样子。
sent = train_dataset.docs[0]
label = train_dataset.labels[1]
print('sentence list id is:', sent)
print('sentence label id is:', label)
print('--------------------------')
print('sentence list is: ', ids_to_str(sent))
print('sentence label is: ', classes[label])

输出结果如图4所示:

【自然语言处理(NLP)】基于FNN网络的电影评论情感分析_网络_05


(二)、用padding的方式对齐数据

文本数据中,每一句话的长度都是不一样的,为了方便后续的神经网络的计算,常见的处理方式是把数据集中的数据都统一成同样长度的数据。这包括:对于较长的数据进行截断处理,对于较短的数据用特殊的词进行填充。接下来的代码会对数据集中的数据进行这样的处理。

def create_padded_dataset(dataset):
padded_sents = []
labels = []
for batch_id, data in enumerate(dataset):
sent, label = data[0], data[1]
padded_sent = np.concatenate([sent[:seq_len], [pad_id] * (seq_len - len(sent))]).astype('int32')
padded_sents.append(padded_sent)
labels.append(label)
return np.array(padded_sents), np.array(labels)

train_sents, train_labels = create_padded_dataset(train_dataset)
test_sents, test_labels = create_padded_dataset(test_dataset)

print(train_sents.shape)
print(train_labels.shape)
print(test_sents.shape)
print(test_labels.shape)

for sent in train_sents[:3]:
print(ids_to_str(sent))

(三)、用Dataset 与 DataLoader 加载

将前面准备好的训练集与测试集用Dataset 与 DataLoader封装后,完成数据的加载。

class IMDBDataset(paddle.io.Dataset):
def __init__(self, sents, labels):
self.sents = sents
self.labels = labels

def __getitem__(self, index):
data = self.sents[index]
label = self.labels[index]

return data, label

def __len__(self):
return len(self.sents)

train_dataset = IMDBDataset(train_sents, train_labels)
test_dataset = IMDBDataset(test_sents, test_labels)

train_loader = paddle.io.DataLoader(train_dataset, return_list=True,
shuffle=True, batch_size=batch_size, drop_last=True)
test_loader = paddle.io.DataLoader(test_dataset, return_list=True,
shuffle=True, batch_size=batch_size, drop_last=True)

二、模型配置

本示例中,我们将会使用一个不考虑词的顺序的BOW的网络,在查找到每个词对应的embedding后,简单的取平均,作为一个句子的表示。然后用​​Linear​​​进行线性变换。为了防止过拟合,我们还使用了​​Dropout​​。

class MyNet(paddle.nn.Layer):
def __init__(self):
super(MyNet, self).__init__()
self.emb = paddle.nn.Embedding(vocab_size, emb_size)
self.fc = paddle.nn.Linear(in_features=emb_size, out_features=2)
self.dropout = paddle.nn.Dropout(0.5)

def forward(self, x):
x = self.emb(x)
x = paddle.mean(x, axis=1)
x = self.dropout(x)
x = self.fc(x)
return x

三、模型训练

代码1:

def draw_process(title,color,iters,data,label):
plt.title(title, fontsize=24)
plt.xlabel("iter", fontsize=20)
plt.ylabel(label, fontsize=20)
plt.plot(iters, data,color=color,label=label)
plt.legend()
plt.grid()
plt.show()

代码2

def train(model):
model.train()
opt = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())
steps = 0
Iters, total_loss, total_acc = [], [], []

for epoch in range(epochs):
for batch_id, data in enumerate(train_loader):
steps += 1
sent = data[0]
label = data[1]

logits = model(sent)
loss = paddle.nn.functional.cross_entropy(logits, label)
acc = paddle.metric.accuracy(logits, label)

if batch_id % 500 == 0:
Iters.append(steps)
total_loss.append(loss.numpy()[0])
total_acc.append(acc.numpy()[0])

print("epoch: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, loss.numpy()))

loss.backward()
opt.step()
opt.clear_grad()

# evaluate model after one epoch
model.eval()
accuracies = []
losses = []

for batch_id, data in enumerate(test_loader):

sent = data[0]
label = data[1]

logits = model(sent)
loss = paddle.nn.functional.cross_entropy(logits, label)
acc = paddle.metric.accuracy(logits, label)

accuracies.append(acc.numpy())
losses.append(loss.numpy())

avg_acc, avg_loss = np.mean(accuracies), np.mean(losses)

print("[validation] accuracy: {}, loss: {}".format(avg_acc, avg_loss))

model.train()

paddle.save(model.state_dict(),str(epoch)+"_model_final.pdparams")

draw_process("trainning loss","red",Iters,total_loss,"trainning loss")
draw_process("trainning acc","green",Iters,total_acc,"trainning acc")

model = MyNet()
train(model)

输出结果如下图5、6所示:

【自然语言处理(NLP)】基于FNN网络的电影评论情感分析_网络_06

【自然语言处理(NLP)】基于FNN网络的电影评论情感分析_人工智能_07

【自然语言处理(NLP)】基于FNN网络的电影评论情感分析_FNN_08


四、模型评估

'''
模型评估
'''
model_state_dict = paddle.load('model_final.pdparams')
model = MyNet()
model.set_state_dict(model_state_dict)
model.eval()
accuracies = []
losses = []

for batch_id, data in enumerate(test_loader):

sent = data[0]
label = data[1]

logits = model(sent)
loss = paddle.nn.functional.cross_entropy(logits, label)
acc = paddle.metric.accuracy(logits, label)

accuracies.append(acc.numpy())
losses.append(loss.numpy())

avg_acc, avg_loss = np.mean(accuracies), np.mean(losses)
print("[validation] accuracy: {}, loss: {}".format(avg_acc, avg_loss))

输出结果如下图7所示:

【自然语言处理(NLP)】基于FNN网络的电影评论情感分析_情感分析_09


五、模型预测

def ids_to_str(ids):
words = []
for k in ids:
w = list(word_dict)[k]
words.append(w if isinstance(w, str) else w.decode('ASCII'))
return " ".join(words)

label_map = {0:"negative", 1:"positive"}

model_state_dict = paddle.load('model_final.pdparams')
model = MyNet()
model.set_state_dict(model_state_dict)
model.eval()

for batch_id, data in enumerate(test_loader):

sent = data[0]
results = model(sent)

predictions = []
for probs in results:
# 映射分类label
idx = np.argmax(probs)
labels = label_map[idx]
predictions.append(labels)

for i,pre in enumerate(predictions):
print(' 数据: {} \n 情感: {}'.format(ids_to_str(sent[0]), pre))
break
break

输出结果如下图8所示:

【自然语言处理(NLP)】基于FNN网络的电影评论情感分析_人工智能_10



标签:NLP,paddle,label,train,dict,print,FNN,model,自然语言
From: https://blog.51cto.com/u_15745546/5807837

相关文章