最近在复现 PPO 跑 MiniGrid,记录一下…
这里跑的环境是 Empty-5x5 和 8x8,都是简单环境,主要验证 PPO 实现是否正确。
01 Proximal policy Optimization(PPO)
(参考:知乎 | Proximal Policy Optimization (PPO) 算法理解:从策略梯度开始 )
首先,策略梯度方法 的梯度形式是
\[\nabla_\theta J(\theta)\approx \frac1n \sum_{i=0}^{n-1} R(\tau_i) \sum_{t=0}^{T-1} \nabla_\theta \log \pi_\theta(a_t|s_t) \tag1 \]然而,传统策略梯度方法容易一步走的太多,以至于越过了中间比较好的点(在参考知乎博客里称为 overshooting)。一个直观的想法是限制策略每次不要更新太多,比如去约束 新策略 旧策略之间的 KL 散度(公式是 plog(p/q)):
\[D_{KL}(\pi_\theta | \pi_{\theta+\Delta \theta}) = \mathbb E_{s,a} \pi_\theta(a|s)\log\frac{\pi_\theta(a|s)}{\pi_{\theta+\Delta \theta}(a|s)} \le \epsilon \tag2 \]我们把这个约束进行拉格朗日松弛,将它变成一个惩罚项:
\[\Delta\theta^* = \arg\max_{\Delta\theta} J(\theta+\Delta\theta) - \lambda [D_{KL}(\pi_\theta | \pi_{\theta+\Delta \theta})-\epsilon] \tag3 \]然后再使用一些数学近似技巧,可以得到自然策略梯度(NPG)算法。
NPG 算法貌似还有种种问题,比如 KL 散度的约束太紧,导致每次更新后的策略性能没有提升。我们希望每次策略更新后都带来性能提升,因此计算 新策略 旧策略之间 预期回报的差异。这里采用计算 advantage 的方式:
\[J(\pi_{\theta+\Delta\theta})=J(\pi_{\theta})+\mathbb E_{\tau\sim\pi_{\theta+\Delta\theta}}\sum_{t=0}^\infty \gamma^tA^{\pi_{\theta}}(s_t,a_t) \tag{4} \]其中优势函数(advantage)的定义是:
\[A^{\pi_{\theta}}(s_t,a_t)=\mathbb E(Q^{\pi_{\theta}}(s_t,a_t)-V^{\pi_{\theta}}(s_t)) \tag{5} \]在公式 (4) 中,我们计算的 advantage 是在 新策略 的期望下的。但是,在新策略下蒙特卡洛采样(rollout)来算 advantage 期望太麻烦了,因此我们在原策略下 rollout,并进行 importance sampling,假装计算的是新策略下的 advantage。这个 advantage 被称为替代优势(surrogate advantage):
\[\mathcal{L}_{\pi_{\theta}}\left(\pi_{\theta+\Delta\theta}\right) = J\left(\pi_{\theta+\Delta\theta}\right)-J\left(\pi_{\theta}\right)\approx E_{s\sim\rho_{\pi\theta}}\frac{\pi_{\theta+\Delta\theta}(a\mid s)}{\pi_{\theta}(a\mid s)} A^{\pi_{\theta}}(s, a) \tag6 \]所产生的近似误差,貌似可以用两种策略之间最坏情况的 KL 散度表示:
\[J(\pi_{\theta+\Delta\theta})-J(\pi_{\theta})\geq\mathcal{L}_{\pi\theta}(\pi_{\theta+\Delta\theta})-CD_{KL}^{\max}(\pi_{\theta}||\pi_{\theta+\Delta\theta}) \tag7 \]其中 C 是一个常数。这貌似就是 TRPO 的单调改进定理,即,如果我们改进下限 RHS,我们也会将目标 LHS 改进至少相同的量。
基于 TRPO 算法,我们可以得到 PPO 算法。PPO Penalty 跟 TRPO 比较相近:
\[\Delta\theta^{*}=\underset{\Delta\theta}{\text{argmax}} \Big[\mathcal{L}_{\theta+\Delta\theta}(\theta+\Delta\theta)-\beta\cdot \mathcal{D}_{KL}(\pi_{\theta}\parallel\pi_{\theta+\Delta\theta})\Big] \tag 8 \]其中,KL 散度惩罚的 β 是启发式确定的:PPO 会设置一个目标散度 \(\delta\),如果最终更新的散度超过目标散度的 1.5 倍,则下一次迭代我们将加倍 β 来加重惩罚。相反,如果更新太小,我们将 β 减半,从而扩大信任域。
接下来是 PPO Clip,这貌似是目前最常用的 PPO。PPO Penalty 用 β 来惩罚策略变化,而 PPO Clip 与此不同,直接限制策略可以改变的范围。我们重新定义 surrogate advantage:
\[\begin{aligned} \mathcal{L}_{\pi_{\theta}}^{CLIP}(\pi_{\theta_{k}}) = \mathbb E_{\tau\sim\pi_{\theta}}\bigg[\sum_{t=0}^{T} \min\Big( & \rho_{t}(\pi_{\theta}, \pi_{\theta_{k}})A_{t}^{\pi_{\theta_{k}}}, \\ & \text{clip} (\rho_{t}(\pi_{\theta},\pi_{\theta_{k}}), 1-\epsilon, 1+\epsilon) A_{t}^{\pi_{\theta_{k}}} \Big)\bigg] \end{aligned} \tag 9 \]其中, \(\rho_{t}\) 为重要性采样的 ratio:
\[\rho_{t}(\theta)=\frac{\pi_{\theta}(a_{t}\mid s_{t})}{\pi_{\theta_{k}}(a_{t}\mid s_{t})} \tag{10} \]公式 (9) 中,min 括号里的第一项是 ratio 和 advantage 相乘,代表新策略下的 advantage;min 括号里的第二项是对 ration 进行的 clip 与 advantage 的相乘。这个 min 貌似可以限制策略变化不要太大。
02 如何复现 PPO(参考 stable baselines3 和 clean RL)
- stable baselines3 的 PPO:https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/ppo/ppo.py
- clean RL 的 PPO:https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo.py
代码主要结构如下,以 stable baselines3 为例:(仅保留主要结构,相当于伪代码,不保证正确性)
import torch
import torch.nn.functional as F
import numpy as np
# 1. collect rollout
self.policy.eval()
rollout_buffer.reset()
while not done:
actions, values, log_probs = self.policy(self._last_obs)
new_obs, rewards, dones, infos = env.step(clipped_actions)
rollout_buffer.add(
self._last_obs, actions, rewards,
self._last_episode_starts, values, log_probs,
)
self._last_obs = new_obs
self._last_episode_starts = dones
with torch.no_grad():
# Compute value for the last timestep
values = self.policy.predict_values(obs_as_tensor(new_obs, self.device))
rollout_buffer.compute_returns_and_advantage(last_values=values, dones=dones)
# 2. policy optimization
for rollout_data in self.rollout_buffer.get(self.batch_size):
actions = rollout_data.actions
values, log_prob, entropy = self.policy.evaluate_actions(rollout_data.observations, actions)
advantages = rollout_data.advantages
# Normalize advantage
if self.normalize_advantage and len(advantages) > 1:
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
# ratio between old and new policy, should be one at the first iteration
ratio = torch.exp(log_prob - rollout_data.old_log_prob)
# clipped surrogate loss
policy_loss_1 = advantages * ratio
policy_loss_2 = advantages * torch.clamp(ratio, 1 - clip_range, 1 + clip_range)
policy_loss = -torch.min(policy_loss_1, policy_loss_2).mean()
# Value loss using the TD(gae_lambda) target
value_loss = F.mse_loss(rollout_data.returns, values_pred)
# Entropy loss favor exploration
entropy_loss = -torch.mean(entropy)
loss = policy_loss + self.ent_coef * entropy_loss + self.vf_coef * value_loss
# Optimization step
self.policy.optimizer.zero_grad()
loss.backward()
# Clip grad norm
torch.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
self.policy.optimizer.step()
大致流程:收集当前策略的 rollout → 计算 advantage → 策略优化。
计算 advantage 是由 rollout_buffer.compute_returns_and_advantage 函数实现的:
rb = rollout_buffer
last_gae_lam = 0
for step in reversed(range(buffer_size)):
if step == buffer_size - 1:
next_non_terminal = 1.0 - dones.astype(np.float32)
next_values = last_values
else:
next_non_terminal = 1.0 - rb.episode_starts[step + 1]
next_values = rb.values[step + 1]
delta = rb.rewards[step] + gamma * next_values * next_non_terminal - rb.values[step] # (1)
last_gae_lam = delta + gamma * gae_lambda * next_non_terminal * last_gae_lam # (2)
rb.advantages[step] = last_gae_lam
rb.returns = rb.advantages + rb.values
其中,
- (1) 行通过类似于 TD error 的形式(A = r + γV(s') - V(s)),计算当前 t 时刻的 advantage;
- (2) 行则是把 t+1 时刻的 advantage 乘 gamma 和 gae_lambda 传递过来。
03 记录一些踩坑经历
- PPO 在收集 rollout 的时候,要在分布里采样,而非采用 argmax 动作,否则没有 exploration。(PPO 在分布里采样 action,这样来保证探索,而非使用 epsilon greedy 等机制;听说 epsilon greedy 机制是 value-based 方法用的)
- 如果 policy 网络里有(比如说)batch norm,rollout 时应该把 policy 开 eval 模式,这样就不会出错。
- (但是,不要加 batch norm,加 batch norm 性能就不好了。听说 RL 不能加 batch norm)
- minigrid 简单环境,RNN 加不加貌似都可以(?)
- 在算 entropy loss 的时候,要用真 entropy,从 Categorical 分布里得到的 entropy;不要用 -logprob 近似的,不然会导致策略分布 熵变得很小 炸掉。
标签:advantage,self,PPO,policy,复现,Delta,RL,theta,pi From: https://www.cnblogs.com/moonout/p/18561027