首页 > 其他分享 >转载:【AI系统】微分计算模式

转载:【AI系统】微分计算模式

时间:2024-12-12 18:09:20浏览次数:7  
标签:partial AI dfrac 微分 计算 delta frac 转载 节点

上一篇文章简单了解计算机中常用几种微分方式。本文将深入介绍 AI 框架离不开的核心功能:自动微分。

而自动微分则是分为前向微分和后向微分两种实现模式,不同的实现模式有不同的机制和计算逻辑,而无论哪种模式都离不开雅克比矩阵,所以我们也会深入了解一下雅克比矩阵的原理。

雅克比矩阵

在向量微积分中,Jacobian 矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式称为 Jacobian 行列式。Jacobian 矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近。

Jacobian 矩阵表示两个向量所有可能的偏导数。它是一个向量相对于另一个向量的梯度,其实现的是 $n$ 维向量到 $m$ 维向量的映射。

在矢量运算中,Jacobian 矩阵是基于函数对所有变量一阶偏导数的数值矩阵,当输入个数等于输出个数时又称为 Jacobian 行列式。

假设输入向量 $

标签:partial,AI,dfrac,微分,计算,delta,frac,转载,节点
From: https://www.cnblogs.com/xueaigc/p/18603135

相关文章

  • 打假B站百万 UP 主? MarsCode AI 真的如此丝滑?
    文章目录前言前置准备复现实验频率调整问题解决方法复现篮球显示问题解决方法复现碰撞问题解决方法复现复现结论如何正确使用MarsCodeAI新增实现一个计时器需求为例总结个人简介前言最近逛B站经常看到一个熟悉的身影,豆包MarsCodeAI,对于一位对AI领域稍有......
  • Slick/Slick.js使用方法(个人总结)/Slick.js介绍(转载,仅个人收藏使用)
    Slick/Slick.js使用方法(个人总结)/Slick.js介绍相比于Swiper而选择使用Slick.js的原因主要是因为其兼容不错并且在手机端的滑动效果更顺畅 官方参数介绍:官方地址参数类型默认值描述accessibility布尔值TRUE启用Tab键和箭头键导航adaptiveHeight布尔值FALSE......
  • 转载:【AI系统】AI的领域、场景与行业应用
    AI的历史与现状本文将介绍AI的由来、现状和趋势,让大家能够了解AI应用的由来与趋势,为后面理解AI系统的设计形成初步的基础。在后面文章介绍的人工智能系统(AISystem)奠定基础,值得注意的是,这些系统设计原则大部分也适合于机器学习系统(MLSystem)。因为系统本身是随着上层应用......
  • 转载:【AI系统】AI 基本理论奠定
    AI基本理论奠定虽然AI在今年取得了举世瞩目的进展与突破,但是其当前基于的核心理论神经网络等,在这波浪潮开始前已经基本奠定,并经历了多次的起起伏伏。神经网络作为AI的前身,经历了以下的发展阶段:萌芽兴奋期(约1950s)1943年,神经科学家和控制论专家WarrenMcCulloch和逻辑......
  • 转载:【AI系统】AI 发展驱动力
    AI起源于上世纪五十年代,经历了几次繁荣与低谷,直到2016年谷歌旗下的DeepMind发布AlphaGo程序赢得与世界围棋冠军的比赛,大众对AI的关注与热情被重新点燃。其实AI技术早在这个标志事件之前已经在工业界很多互联网公司中得到了广泛应用与部署。例如,搜索引擎服务中的排序、......
  • 转载:【AI系统】计算与调度
    上一篇我们了解了什么是算子,神经网络模型中由大量的算子来组成,但是算子之间是如何执行的?组成算子的算法逻辑跟具体的硬件指令代码之间的调度是如何配合?计算与调度计算与调度的来源图像处理在当今物理世界中是十分基础且开销巨大的计算应用。图像处理算法在实践中需要高效的实现......
  • 转载:【AI系统】算子手工优化
    在上一篇中,探讨了算子计算和调度的概念,并强调了高效调度策略在释放硬件性能和降低延迟方面的重要性。本文,我们将深入讨论手写算子调度时需要考虑的关键因素,并介绍一些著名的高性能算子库。计算分析在优化算子前,首先需要知道当前程序的瓶颈在哪里,是计算瓶颈还是访存瓶颈。对于这......
  • 转载:【AI系统】计算图与自动微分
    在前面的文章曾经提到过,目前主流的AI框架都选择使用计算图来抽象神经网络计算表达,通过通用的数据结构(张量)来理解、表达和执行神经网络模型,通过计算图可以把AI系统化的问题形象地表示出来。本文将会以AI概念落地的时候,遇到的一些问题与挑战,因此引出了计算图的概念来对神经网......
  • 转载:【AI系统】计算图原理
    在前面的文章曾经提到过,目前主流的AI框架都选择使用计算图来抽象神经网络计算表达,通过通用的数据结构(张量)来理解、表达和执行神经网络模型,通过计算图可以把AI系统化的问题形象地表示出来。本文将会以AI概念落地的时候,遇到的一些问题与挑战,因此引出了计算图的概念来对神经网......
  • 转载:【AI系统】计算图基本介绍
    在AI框架发展的最近一个阶段,技术上主要以计算图来描述神经网络。前期实践最终催生出了工业级AI:TensorFlow和PyTorch,这一时期同时伴随着如Chainer、DyNet、CNTK、PaddlePaddle、JAX等激发了框架设计灵感的诸多实验课程。TensorFlow和PyTorch,特别是PyTorch代表了今天AI......