核心要点
- 掌握 LLM 应用中的动态路由策略
- 实现健壮的错误处理机制
- 构建实用的多语言内容处理系统
- 学习降级策略的最佳实践
动态路由机制解析
在复杂的 LLM 应用中,不同的输入往往需要不同的处理路径。动态路由可以帮助我们:
- 优化资源使用
- 提高响应准确性
- 增强系统可靠性
- 控制处理成本
路由策略设计
1. 核心组件
from langchain.chains import LLMChain
from langchain.prompts import ChatPromptTemplate
from langchain.output_parsers import PydanticOutputParser
from pydantic import BaseModel, Field
from typing import Optional, List
import asyncio
class RouteDecision(BaseModel):
route: str = Field(description="选择的处理路由")
confidence: float = Field(description="决策的置信度")
reasoning: str = Field(description="路由决策的解释")
class IntelligentRouter:
def __init__(self, routes: List[str]):
self.routes = routes
self.parser = PydanticOutputParser(pydantic_object=RouteDecision)
self.route_prompt = ChatPromptTemplate.from_template(
"""分析以下输入并决定最佳处理路由。
可用路由: {routes}
输入: {input}
{format_instructions}
"""
)
2. 路由选择逻辑
async def decide_route(self, input_text: str) -> RouteDecision:
prompt = self.route_prompt.format(
routes=self.routes,
input=input_text,
format_instructions=self.parser.get_format_instructions()
)
chain = LLMChain(
llm=self.llm,
prompt=self.route_prompt
)
result = await chain.arun(input=input_text)
return self.parser.parse(result)
实战案例:多语言内容处理系统
1. 系统架构
class MultiLangProcessor:
def __init__(self):
self.router = IntelligentRouter([
"translation", # 翻译
"summarization", # 摘要
"sentiment_analysis", # 情感分析
"content_moderation" # 内容审核
])
self.processors = {
"translation": TranslationChain(),
"summarization": SummaryChain(),
"sentiment_analysis": SentimentChain(),
"content_moderation": ModerationChain()
}
async def process(self, content: str) -> Dict:
try:
route = await self.router.decide_route(content)
if route.confidence < 0.8:
return await self.handle_low_confidence(content, route)
processor = self.processors[route.route]
result = await processor.run(content)
return {
"status": "success",
"route": route.route,
"result": result
}
except Exception as e:
return await self.handle_error(e, content)
2. 错误处理实现
class ErrorHandler:
def __init__(self):
self.fallback_llm = ChatOpenAI(
model_name="gpt-3.5-turbo",
temperature=0.3
)
self.retry_limit = 3
self.backoff_factor = 1.5
async def handle_error(
self,
error: Exception,
context: Dict
) -> Dict:
error_type = type(error).__name__
if error_type in self.error_strategies:
return await self.error_strategies[error_type](
error, context
)
return await self.default_error_handler(error, context)
async def retry_with_backoff(
self,
func,
*args,
**kwargs
):
for attempt in range(self.retry_limit):
try:
return await func(*args, **kwargs)
except Exception as e:
if attempt == self.retry_limit - 1:
raise e
await asyncio.sleep(
self.backoff_factor ** attempt
)
降级策略示例
1. 模型降级链
class ModelFallbackChain:
def __init__(self):
self.models = [
ChatOpenAI(model_name="gpt-4"),
ChatOpenAI(model_name="gpt-3.5-turbo"),
ChatOpenAI(model_name="gpt-3.5-turbo-16k")
]
async def run_with_fallback(
self,
prompt: str
) -> Optional[str]:
for model in self.models:
try:
return await self.try_model(model, prompt)
except Exception as e:
continue
return await self.final_fallback(prompt)
2. 内容分块策略
class ChunkingStrategy:
def __init__(self, chunk_size: int = 1000):
self.chunk_size = chunk_size
def chunk_content(
self,
content: str
) -> List[str]:
# 实现智能内容分块
return [
content[i:i + self.chunk_size]
for i in range(0, len(content), self.chunk_size)
]
async def process_chunks(
self,
chunks: List[str]
) -> List[Dict]:
results = []
for chunk in chunks:
try:
result = await self.process_single_chunk(chunk)
results.append(result)
except Exception as e:
results.append(self.handle_chunk_error(e, chunk))
return results
最佳实践建议
-
路由设计原则
- 保持路由功能聚焦和具体
- 实现清晰的降级路径
- 监控路由性能指标
-
错误处理指南
- 实现渐进式降级策略
- 全面的错误日志记录
- 设置关键故障告警
-
性能优化
- 缓存常见路由决策
- 适当实现并发处理
- 监控并调整路由阈值
总结
条件分支链是构建健壮 LLM 应用的关键。主要收获:
- 设计清晰的路由策略
- 实现全面的错误处理
- 规划降级场景
- 监控和优化性能