首页 > 其他分享 >抽象代数-05-同态与同构

抽象代数-05-同态与同构

时间:2024-12-06 18:33:32浏览次数:5  
标签:同构 映射 05 定理 同态 商群 子群 抽象代数

同态与同构

群的同态

设\((G,\cdot)\)和\((G', \odot )\)是两个群,若存在映射\(f: G\to G'\)满足:\(\forall a,b\in G\),均有

\[f(a\cdot b)=f(a)\odot f(b) \]

则称\(f\)是\(G\)到\(G'\)的一个同态映射或简称同态。
如果\(f\)是单射,则称\(f\)是单同态;
如果\(f\)是满射,则称\(f\)是满同态;
如果\(f\)是一一映射,则称\(f\)是同构,记为\(G\cong G'\);
如果\(G=G'\),同态\(f\)称为自同态,同构映射\(f\)称为自同构;
\(Im\)(\(f\))=\(f(G)\)={\(f(a)|a\in G\)}称为群\(G\)的同态像;

同态核

\(ker f=\{a|a\in G,f(a)=e'\} = f^{-1}(e')\) ,称为同态\(f\)的同态核。
同态核\(K=Ker(f)\)就是单位元\(e'\)的全原像,它是一个子群,具有以下性质:

\[\forall a'\in Im(f),若f(a)=a',则f^{-1}(a')=aK \]

\[f是单同态 \Leftrightarrow K={e} \]

同态基本定理

(自然同态):设\(G\)是一个群,\(H\)是\(G\)的正规子群,则\(G\)与它的商群\(G/H\)同态,称为自然同态。
(同态基本定理):设\(f\)是群\(G\to G'\)的一个满同态映射,\(K=Ker(f)\),则\(K\)是\(G\)的一个正规子群,且\(G/K\cong G'\)。设φ是\(G\to G/K\)的自然同态,则存在\(G/K\to G'\)的同构\(\sigma\),使\(f=\sigmaφ\)

选学部分

有关同态的定理

子群对应定理

商群同构定理

第二同构定理

自同态与自同构

标签:同构,映射,05,定理,同态,商群,子群,抽象代数
From: https://www.cnblogs.com/luminescence/p/18591265

相关文章

  • P2057 [SHOI2007] 善意的投票 / [JLOI2010] 冠军调查
    P2057[SHOI2007]善意的投票/[JLOI2010]冠军调查看到数据范围一眼网络流:对于每个人,将其拆成两个点\(x,x'\),对应两种选择。我们对\(x,x'\)连一条流量为\(inf\)的边,表示这个点不能被割。然后分别连边\(S->xx'->T\)流量根据点的初始选择而定,但是注意,流量应该分别设置为1......
  • P2537 [AHOI2005] 穿越磁场
    P2537[AHOI2005]穿越磁场好久以前就加了题单的好题可你就是不写是吧(/‵Д′)/~╧╧题目描述探险机器人在Samuel星球上寻找一块奇特的矿石,然而此时它陷入了一片神秘的磁场区域,动弹不得。探险空间站立刻扫描了这片区域,绘制出该区域的磁场分布平面图。这片区域中分布了N个磁场......
  • 深度学习-1205(全连接层,多层感知机)
    在之前的学习中我已经学习了什么是梯度下降,又如何利用pytorch进行线性回归,找到最合适的表达函数,在本内容中,尝试利用神经网络工具箱nn来进行神经网络的连接。torch.nn是专门为深度学习设计的模块,其核心数据结构是Module,是一个抽象的概念,既可以表示神经网络中的某个层(alyer),也......
  • 天天 AI-241205:今日热点- OpenAI放王炸!Sora、满血o1,连续12天发布最新技术!
    2AGI.NET|探索AI无限潜力,2AGI为您带来最前沿资讯。OpenAI放王炸!Sora、满血o1,连续12天发布最新技术!OpenAI将进行为期12天的技术分享活动,每天发布最新技术或产品演示,包括文生视频模型Sora、增强的ChatGPT功能、GPT-4o图像等,引发科技界和AI社区的广泛关注和期待。来源 ......
  • 20241205:3001. 捕获黑皇后需要的最少移动次数
    现有一个下标从 1 开始的 8x8 棋盘,上面有 3 枚棋子。给你 6 个整数 a 、b 、c 、d 、e 和 f ,其中:(a,b) 表示白色车的位置。(c,d) 表示白色象的位置。(e,f) 表示黑皇后的位置。假定你只能移动白色棋子,返回捕获黑皇后所需的最少移动次数。......
  • 02【SQL sever 2005数据库安装教程】
    一、安装须知1.安装数据库版本:SQLsever20052.适用系统(目前发现):Windowsserver2008R23.安装程序目录:SQL2005SQLServerx64Serverssetup.exe二、安装步骤1.双击setup.exe,以管理员身份运行2.继续安装3.弹出安装FW3.5组件,点击安装,安装速度跟网速有关4.安装完成后......
  • 前端面试题(20241205)
    1.Vue如何检测数组变化1.方法重写(push、pop、shift、unshift、splice、sort和reverse)。2.使用Vue.set或vm.$set(对于直接通过索引设置数组项的操作例如arr[index]=newValue)。3.数组长度变化。4.响应式转换。2.Vue的父子组件生命周期钩子函数执行顺序父组件先初......
  • leetcode 2056. 棋盘上有效移动组合的数目
    classSolution{private:  vector<vector<int>>RMove={{1,0},{-1,0},{0,1},{0,-1}};  vector<vector<int>>BMove={{1,1},{-1,-1},{-1,1},{1,-1}};public:  boolCheckMove(intsx,intsy,intx,inty,intstep,vector<vector......
  • SSM森屿影城售票系统的设计与开发052qj(程序+源码+数据库+调试部署+开发环境)
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容一、项目背景随着电影娱乐行业的快速发展,观众对购票体验的要求日益提高。森屿影城作为地区知名的电影院线,为提升购票效率和服务质量,决定设计并开发......
  • task05 条件
    task05条件1.if语句流程deff(x): print("A",end="") ifx==0: print("B",end="") print("C",end="") print("D")1).引入abs函数2).多个返回语句defabs3(n): ifn<0: return-n return......