Latex 公式速查
本文仅提供的能够在 \(Markdown\) 中使用的 \(Latex\) 公式。
如何插入 \(Latex\) 公式?
- 行内公式:
$公式$
- 独立公式:
$$公式$$
函数
对数与指数
\(a^x\) a^x
\(\sqrt{x}\) \sqrt{x}
\(\sqrt[3]{x}\) \sqrt[3]{x}
\(\sqrt[a]{x}\) \sqrt[a]{x}
\(\exp x\) \exp x
\(\log x\) \log x
\(\lg x\) \lg x
\(\ln x\) \ln x
三角函数
\(\sin x\) \sin x
\(\cos x\) \cos x
\(\tan x\) \tan x
\(\cot x\) \cot x
\(\sec x\) \sec x
\(\csc x\) \csc x
\(\arcsin x\) \arcsin x
\(\arccos x\) \arccos x
\(\arctan x\) \arctan x
\(\sinh x\) \sinh x
\(\cosh x\) \cosh x
\(\tanh x\) \tanh x
其他函数
最小值: \(\min x\) \min x
最大值: \(\max x\) \max x
最大公约数: \(\gcd x\) \gcd x
角度: \(\deg\) \deg
极限: \(\lim_{x \to \infty}f(x)\) \lim_{x \to \infty}f(x)
上确界: \(\sup M\) \sup M
下确界: \(\inf M\) \inf M
行列式: \(\det A\) \det A
维数: \(\dim A\) \dim A
矩阵kernel: \(\ker A\) \ker A
投影: \(\Pr\) \Pr
同调群:\(\hom\) \hom
复数的幅角: \(\arg z\) \arg z
向下取整: \(\lfloor x \rfloor\) \lfloor x \rfloor
向上取整: \(\lceil x \rceil\) \lceil x \rceil
自定义函数: \(\operatorname{function} x\) \operatorname{function} x
符号
运算符
\(\pm\) \pm
\(\mp\) \mp
\(\dotplus\) \dotplus
\(\times\) \times
\(\div\) \div
\(\frac{a}{b}\) \frac{a}{b}
\(\divideontimes\) \divideontimes
\(\backslash\) \backslash
\(\cdot\) \cdot
\(\ast\) \ast
\(\circ\) \circ
\(\bullet\) \bullet
\(\boxplus\) \boxplus
\(\boxminus\) \boxminus
\(\boxtimes\) \boxtimes
\(\boxdot\) \boxdot
\(\oplus\) \oplus
\(\ominus\) \ominus
\(\otimes\) \otimes
\(\oslash\) \oslash
\(\odot\) \odot
\(\bigoplus\) bigoplus
\(\bigotimes\) \bigotimes
\(\bigodot\) \bigodot
集合
\(\{ \}\) \{ \}
\(\empty\) \empty
\(\varnothing\) \varnothing
\(\in\) \in
\(\not\in\) \notin
或 \not\in
\(\ni\) \ni
\(\notni\) \notni
或 \not\ni
\(\cap\) \cap
\(\Cap\) \Cap
\(\sqcap\) \sqcap
\(\bigcap\) \bigcap
\(\cup\) \cup
\(\Cup\) \Cup
\(\sqcup\) \sqcup
\(\bigcup\) \bigcup
\(\bigsqcup\) \bigscup
\(\uplus\) \uplus
\(\biguplus\) \biguplus
\(\subset\) \subset
\(\Subset\) \Subset
\(\sqsubset\) \sqsubset
\(\supset\) \supset
\(\Supset\) \Supset
\(\sqsupset\) \sqsupset
\(\subseteq\) \subseteq
\(\nsubseteq\) \nsubseteq
\(\subsetneq\) \subsetneq
\(\varsubsetneq\) \varsubsetneq
\(\sqsubseteq\) \sqsubseteq
\(\supseteq\) \supseteq
\(\nsupseteq\) \nsupseteq
\(\supsetneq\) \supsetneq
\(\varsupsetneq\) \varsupsetneq
\(\sqsupseteq\) \sqsupseteq
\(\sqsupset\) \sqsupset
\(\subseteqq\) \subseteqq
\(\nsubseteqq\) \nsubseteqq
\(\subsetneqq\) \subsetneqq
\(\varsubsetneqq\) \varsubsetneqq
\(\supseteqq\) \supseteqq
\(\nsupseteqq\) \nsupseteqq
\(\supsetneqq\) \supsetneqq
\(\varsupsetneqq\) \varsupsetneqq
关系符号
\(\ne\) \ne
或 \neq
\(\equiv\) \equiv
\(\not\equiv\) \not\equiv
\(\doteq\) \doteq
\(\doteqdot\) \doteqdot
\(\sim\) \sim
\(\nsim\) \nsim
\(\backsim\) \backsim
\(\thicksim\) \thicksim
\(\simeq\) \simeq
\(\backsimeq\) \backsimeq
\(\eqsim\) \eqsim
\(\cong\) \cong
\(\ncong\) \ncong
\(\approx\) \approx
\(\thickapprox\) \thickapprox
\(\approxeq\) \approxeq
\(\asymp\) \asymp
\(\propto\) \propto
\(\varpropto\) \varpropto
\(\ngtr\) \ngtr
\(\gg\) \gg
\(\ggg\) \ggg
\(\not\ggg\) \not\ggg
\(\gtrdot\) \gtrdot
\(\ngtr\) \ngtr
\(\lneq\) \lneq
\(\leqq\) \leqq
\(\nleq\) \nleq
\(\nleqq\) \nleqq
\(\lneqq\) \lneqq
\(\lvertneqq\) \lvertneqq
\(\ge\) \ge
\(\geq\) \geq
\(\gneq\) \gneq
\(\geqq\) \geqq
\(\ngeq\) \ngeq
\(\ngeqq\) \ngeqq
\(\gneqq\) \gneqq
\(\gvertneqq\) \gvertneqq
几何符号
\(\parallel\) \parallel
\(\nparallel\) \nparallel
\(\shortparallel\) \shortparallel
\(\nshortparallel\) nshortparallel
\(\perp\) \perp
\(\angle\) \angle
\(\sphericalangle\) \sphericalangle
\(\measuredangle\) \measuredangle
\(45^\circ\) 45^\circ
\(\Box\) \Box
\(\blacksquare\) \blacksquare
\(\diamond\) \diamond
\(\Diamond\) \Diamond
\(\lozenge\) \lozenge
\(\blacklozenge\) \blacklozenge
\(\bigstar\) \bigstar
\(\bigcirc\) \bigcirc
\(\triangle\) \triangle
\(\bigtriangleup\) \bigtriangleup
\(\bigtriangledown\) \bigtriangledown
\(\vartriangle\) \vartriangle
\(\triangledown\) \triangledown
\(\blacktriangle\) \blacktriangle
\(\blacktriangledown\) \blacktriangledown
\(\blacktriangleleft\) \blacktriangleleft
\(\blacktriangleright\) \blacktriangleright
逻辑符号
\(\forall\) \forall
\(\exists\) \exists
\(\nexists\) \nexists
\(\therefore\) \therefore
\(\because\) \because
\(\And\) \And
\(\mid\) \mid
\(\lor\) \lor
或 \vee
\(\land\) \land
或 \wedge
\(\bar{q}\) \bar{q}
\(\overline{q}\) \overline{q}
\(\lnot\) \lnot
或 \neg
\(\bot\) \bot
\(\top\) \top
\(\vdash\) \vdash
\(\dashv\) \dashv
\(\vDash\) \vDash
\(\Vdash\) \Vdash
\(\models\) \models
\(\ulcorner\) \ulcorner
\(\urcorner\) \urcorner
\(\llcorner\) \llcorner
\(\lrcorner\) \lrcorner
箭头 - arrow
\(\rightarrow\) \rightarrow
\(\nrightarrow\) \nrightarrow
\(\longrightarrow\) \longrightarrow
\(\Rightarrow\) \Rightarrow
\(\nRightarrow\) \nRightarrow
\(\Longrightarrow\) \Longrightarrow
\(\leftarrow\) \leftarrow
\(\nleftarrow\) n\leftarrow
\(\longleftarrow\) \longleftarrow
\(\Leftarrow\) \Leftarrow
\(\nLeftarrow\) \nLeftarrow
\(\Longleftarrow\) \Longleftarrow
\(\leftrightarrow\) \leftrightarrow
\(\nleftrightarrow\) \nleftrightarrow
\(\Leftrightarrow\) \Leftrightarrow
\(\nLeftrightarrow\) \nLeftrightarrow
\(\longleftrightarrow\) \longleftrightarrow
\(\iff\) iff
\(\Longleftrightarrow\) \Longleftrightarrow
\(\uparrow\) \uparrow
\(\downarrow\) \downarrow
\(\updownarrow\) \updownarrow
\(\Uparrow\) \Uparrow
\(\Downarrow\) \Downarrow
\(\nearrow\) \nearrow
\(\swarrow\) \swarrow
\(\nwarrow\) \nwarrow
\(\searrow\) \searrow
\(\rightharpoonup\) \rightharpoonup
\(\rightharpoondown\) \rightharpoondown
\(\leftharpoonup\) \leftharpoonup
\(\leftharpoondown\) \leftharpoondown
\(\upharpoonleft\) \upharpoonleft
\(\downharpoonleft\) \downharpoonleft
\(\upharpoonright\) \upharpoonright
\(\downharpoonright\) \downharpoonright
\(\rightleftharpoons\) \rightleftharpoons
\(\leftrightharpoons\) \leftrightharpoons
\(\curvearrowleft\) \curvearrowleft
\(\curvearrowright\) \curvearrowright
\(\circlearrowleft\) \circlearrowleft
\(\circlearrowright\) \circlearrowright
\(\Lsh\) \Lsh
\(\Rsh\) \Rsh
\(\upuparrows\) \upuparrows
\(\downdownarrows\) \downdownarrows
\(\leftleftarrows\) \leftleftarrows
\(\rightrightarrows\) \rightrightarrows
\(\stackrel{text}{\longrightarrow}\) \stackrel{text}{\longrightarrow}
\(\stackrel{text}{\longleftarrow}\) \stackrel{text}{\longleftarrow}
\(\stackrel{text}{\downarrow}\) \stackrel{text}{\downarrow}
\(\stackrel{text}{\uparrow}\) \stackrel{text}{\uparrow}
希腊字母
\(\alpha\) \alpha
\(\beta\) \beta
\(\gamma\) \gamma
\(\delta\) \delta
\(\epsilon\) \epsilon
\(\varepsilon\) \varepsilon
\(\zeta\) \zeta
\(\eta\) \eta
\(\theta\) \theta
\(\vartheta\) \vartheta
\(\iota\) \iota
\(\kappa\) \kappa
\(\lambda\) \lambda
\(\mu\) \mu
\(\nu\) \nu
\(\xi\) \xi
\(\pi\) \pi
\(\varpi\) \varpi
\(\rho\) \rho
\(\varrho\) \varrho
\(\sigma\) \sigma
\(\varsigma\) \varsigma
\(\tau\) \tau
\(\upsilon\) \upsilon
\(\phi\) \phi
\(\varphi\) \varphi
\(\chi\) \chi
\(\psi\) \psi
\(\omega\) \omega
\(\Gamma\) \Gamma
\(\Delta\) \Delta
\(\Theta\) \Theta
\(\Lambda\) \Lambda
\(\Xi\) \Xi
\(\Pi\) \Pi
\(\Sigma\) \Sigma
\(\Upsilon\) \Upsilon
\(\Phi\) \Phi
\(\Psi\) \Psi
\(\Omega\) \Omega
字体
黑板报粗体
只对大写字母有效
\(\mathbb{FONT}\) \mathbb{FONT}
粗体
对大小写字母、希腊字母都有效
\(\mathbf{FONT}\) \mathbf{FONT}
\(\mathbf{font}\) \mathbf{font}
\(\mathbf{\digamma\Theta\Nu\Tau}\) \mathbf{\digamma\Theta\Nu\Tau}
斜体
\(\mathit{1234567890}\) \mathit{1234567890}
\(\mathit{abcdefg}\) \mathit{abcdefg}
\(\mathit{ABCDEFG}\) \mathit{ABCDEFG}
无衬线体
\(\mathsf{ABCDEFG}\) \mathsf{ABCDEFG}
手写体
\(\mathcal{ABCDEFG}\) \mathcal{ABCDEFG}
注释文本
用 text{}
在公式中添加文本: \(\text{注释信息}\) \text{注释信息}
颜色
格式:
\color{颜色}{文本}
旧版浏览器支持:
\(\color{gray}{text}\) \color{gray}{text}
\(\color{silver}{text}\) \color{silver}{text}
\(\color{blue}{text}\) \color{blue}{text}
\(\color{yellow}{text}\) \color{yellow}{text}
\(\color{red}{text}\) \color{red}{text}
\(\color{lime}{text}\) \color{lime}{text}
\(\color{green}{text}\) \color{green}{text}
\(\color{fuchsia}{text}\) \color{fuchsia}{text}
较新浏览器支持 \color{#rgb}{text}
来自定义更多的颜色,#rgb
的 r、g、b
分别可以是十六进制表示的 0~255
的数。
\(\color{#ffdddd}{text}\) \color{#ffdddd}{text}
\(\color{#ff8888}{text}\) \color{#ff8888}{text}
\(\color{#ffaa11}{text}\) \color{#ffaa11}{text}
\(\color{#ffccaa}{text}\) \color{#ffccaa}{text}
\(\color{#ffdd66}{text}\) \color{#ffdd66}{text}
\(\color{#ffbbee}{text}\) \color{#ffbbee}{text}
\(\color{#aaaaff}{text}\) \color{#aaaaff}{text}
\(\color{#7777ff}{text}\) \color{#7777ff}{text}
\(\color{#66ccff}{text}\) \color{#66ccff}{text}
\(\color{#99ccff}{text}\) \color{#99ccff}{text}
\(\color{#00eeff}{text}\) \color{#00eeff}{text}
\(\color{#bbffee}{text}\) \color{#bbffee}{text}
\(\color{#99ff99}{text}\) \color{#99ff99}{text}
\(\color{#44bb66}{text}\) \color{#44bb66}{text}
\(\color{#44ff77}{text}\) \color{#44ff77}{text}
\(\color{#0088ff}{text}\) \color{#0088ff}{text}
\(\color{#22cc88}{text}\) \color{#22cc88}{text}
\(\color{#777777}{text}\) \color{#777777}{text}
\(\color{#aaaaaa}{text}\) \color{#aaaaaa}{text}
\(\color{#f0f0f0}{text}\) \color{#f0f0f0}{text}
空格
\,
表示一个窄空格,\(\frac{1}{6}\) M 的宽度\
或\:
表示一个中等空格\;
表示一个大空格\quad
表示一个字母 M 宽度的空格\qquad
表示两个 \quad 的宽度\!
表示一个负的窄空格,缩进\(\frac{1}{6}M\) 的宽度\\
表示换行
上下标与积分等
\(x^2\) x^2
\(x^{a + b}\) x^{a+b}
\(a_1\) a_1
\(a_{ij}\) a_{ij}
前置上下标: \({}_1^2\!X_3^4\) {}_1^2\!x_3^4
正上方标记:\(\sum\limits^n\) \sum\limits^n
正下方标记:\(\min\limits_{i \leq k \leq j - 1}\) \min\limits_{i \leq k \leq j - 1}
导数: \(x^\prime\) x^\prime
或 x'
导数点: \(\dot{x}\) \dot{x}
向量:\(\vec{x}\) \vec{x}
左长箭头: \(\overleftarrow{a + b}\) \overleftarrow{a + b}
右长箭头: \(\overrightarrow{a + b}\) \overrightarrow{a + b}
\(\widehat{abc}\) \widehate{abc}
上弧: \(\overset{\frown}{AB}\) \overset{\frown}{AB}
上划线: \(\overline{abc}\) \overline{abc}
下划线: \(\underline{abc}\) \underline{abc}
上括号: \(\overbrace{1 + 2 + \cdots + 100}\) \overbrace{1 + 2 + \cdots + 100}
上括号示例: \(\begin{matrix}5050\\\overbrace{1 + 2 + \cdots + 100}\end{matrix}\) \begin{matrix}5050\\\overbrace{1 + 2 + \cdots + 100}\end{matrix}
\(\overbrace{\sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}}^{n\ \text{个根号}}\) \overbrace{\sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}}^{n\ \text{个根号}}
下括号: \(\underbrace{1 + 2 + \cdots + 100}\) \underbrace{1 + 2 + \cdots + 100}
下括号示例: \(\begin{matrix}\underbrace{1 + 2 + \cdots + 100}\\5050\end{matrix}\) \begin{matrix}\underbrace{1 + 2 + \cdots + 100}\\5050\end{matrix}
\(\underbrace{\sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}}_{n\ \text{个根号}}\) $\underbrace{\sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}}_{n\ \text{个根号}}$
求和: \(\sum_{k = 1}^{\infty} f(x)\) \sum_{k = 1}^{\infty} f(x)
求和: \(\Sigma_{x = 1}^{\infty} f(x)\) \Sigma_{x = 1}^{t = \infty} f(x)
求积: \(\prod_{i = 1}^{n} x_i\) \prod_{i = 1}^{n} x_i
上积: \(\coprod_{i = 1}^{n} x_i\) \coprod_{i = 1}^{n} x_i
极限: \(\lim_{x\to\infty} f(x)\) \lim_{x\to\infty} f(x)
积分: \(\int_{a}^{b} f(x)dx\) \int_{a}^{b} f(x)dx
双重积分: \(\iint_{a}^{b} f(x) \, dx \, dy\) \iint_{a}^{b} f(x) \, dx \, dy
三重积分: \(\iiint_a^{b} f(x) \, dx \, dy \, dz\) \iiint_a^{b} f(x) \, dx \, dy \, dz
闭合的曲线、曲面积分: \(\oint_{C} x^2 \, dx+ y \, dy\) \oint_{C} x^2 \, dx+ y \, dy
分式
分数:
\(\frac{a + b}{c + d}\) \frac{a + b}{c + d}
\(\frac{dx}{dy}\) \frac{dx}{dy}
连分式: \(\cfrac{1}{2 + \cfrac{3}{4 + \cfrac{5}{6 + \cdots}}}\) \cfrac{1}{2 + \cfrac{3}{4 + \cfrac{5}{6 + \cdots}}}
\(\cfrac{a_1}{b1 + \cfrac{a_2}{b_2 + \cfrac{a_3}{b_3 + \cdots}}}\) \cfrac{a_1}{b1 + \cfrac{a_2}{b_2 + \cfrac{a_3}{b_3 + \cdots}}}
二项式系数: \(C_n^r = \dbinom{n}{r}\) C_n^r = \dbinom{n}{r}
矩阵
语法:
\begin{类型}
公式
\end{类型}
矩阵中 &
分隔元素,\\
进行换行
横三点: \(\cdots\) \cdots
竖三点: \(\vdots\) \vdots
斜三点: \(\ddots\) \ddots
无框矩阵 - matrix
\[\begin{matrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{matrix}\\
\]\begin{matrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{matrix}
行列式 - vmatrix
\[\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{21} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}\\
\]\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{21} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
范数矩阵 - Vmatrix
\[\begin{Vmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,1} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n,1} & a_{n,2} & \cdots & a_{n,n}
\end{Vmatrix}\\
\]\begin{Vmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,1} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n,1} & a_{n,2} & \cdots & a_{n,n}
\end{Vmatrix}
小括号矩阵 - pmatrix
\[\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}\\
\]\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
大括号矩阵 - Bmatrix
\[\begin{Bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{Bmatrix}\\
\]\begin{Bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{Bmatrix}
方括号矩阵 - bmatrix
\[\begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn}
\end{bmatrix}\\
\]\begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn}
\end{bmatrix}
边框 - boxed{}
\[\begin{bmatrix}
\boxed{-1} & 3 & 0 & 2 \\
0 & \boxed{1} & 3 & 1 \\
0 & 0 & 0 & \boxed{2} \\
0 & 0 & 0 & 0
\end{bmatrix}\\
\]\begin{bmatrix}
\boxed{-1} & 3 & 0 & 2 \\
0 & \boxed{1} & 3 & 1 \\
0 & 0 & 0 & \boxed{2} \\
0 & 0 & 0 & 0
\end{bmatrix}\\
数组 - array
\[\begin{array}{}
a & b \\
c & d
\end{array}\\
\]\begin{array}{}
a & b \\
c & d
\end{array}
定界符
语法:
\left 符号
公式
\right 符号
竖线
\[\left | \begin{array}{} a_{11} & a_{12} \\ a_{13} & a_{14} \\ \end{array} \right | \\ \]\left |
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right |
小括号
\[\left ( \begin{array}{} a_{11} & a_{12} \\ a_{13} & a_{14} \\ \end{array} \right ) \\ \]\left (
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right )
大括号
\[\left \{ \begin{array}{} a_{11} & a_{12} \\ a_{13} & a_{14} \\ \end{array} \right \}\\ \]\left \{
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right \}
注:
{}
为特殊字符,无法直接使用,应使用\{
和\}
来输出
方括号
\[\left [ \begin{array}{} a_{11} & a_{12} \\ a_{13} & a_{14} \\ \end{array} \right ]\\ \]\left [
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right ]
分割线
实竖线
\[\left [ \begin{array}{c|c|c|c|c} a_{11} & a_{12} & a_{13} & a_{14} & a_{15}\\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25}\\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35}\\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45}\\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{array} \right ]\\ \]\left [
\begin{array}{c|c|c|c|c}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15}\\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25}\\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35}\\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45}\\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}\\
\right ]
虚竖线
\[\left [ \begin{array}{c:c:c:c:c} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{array} \right ]\\ \]\left [
\begin{array}{c:c:c:c:c}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}
\right ]\\
实横线 - \hline
\[\left [
\begin{array}{}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
\hline
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
\hline
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
\hline
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
\hline
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}
\right ]\\
\]\left [
\begin{array}{}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
\hline
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
\hline
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
\hline
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
\hline
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}
\right ]
虚横线 - \hdashline
\[\left [
\begin{array}{}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
\hdashline
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
\hdashline
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
\hdashline
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
\hdashline
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}
\right ]\\
\]\left [
\begin{array}{}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
\hdashline
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
\hdashline
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
\hdashline
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
\hdashline
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}
\right ]
应用 - 分块矩阵
\[\left [ \begin{array}{cc:cc} 1 & 0 & 1 & -2 \\ 0 & 1 & 0 & 1 \\ \hdashline -1 & 2 & -1 & 0 \\ 0 & -1 & 0 & -1 \end{array} \right ]\\ \]\left [
\begin{array}{cc:cc}
1 & 0 & 1 & -2 \\
0 & 1 & 0 & 1 \\
\hdashline
-1 & 2 & -1 & 0 \\
0 & -1 & 0 & -1
\end{array}
\right ]
应用 - 制作表格
\[\boxed{ \begin{array}{c|c} 矩阵类型 & 关键字 \\ \hline |A| & vmatrix \\ \hline \parallel & Vmatrix \\ \hline () & pmatrix \\ \hline \{\} & Bmatrix \\ \hline [\ ] & bmatrix \end{array} }\\ \]\boxed{
\begin{array}{c|c}
矩阵类型 & 关键字 \\ \hline
|A| & vmatrix \\ \hline
\parallel & Vmatrix \\ \hline
() & pmatrix \\ \hline
\{\} & Bmatrix \\ \hline
[\ ] & bmatrix
\end{array}
}
条件表达式,方程式
条件表达式 - cases
\[f(x) =
\begin{cases}
\begin{aligned}
\frac{\sin x}{|x|},x \ne 0 \\
1,x = 0\\
\end{aligned}
\end{cases}\\
\]f(x) =
\begin{cases}
\begin{aligned}
\frac{\sin x}{|x|},x \ne 0 \\
1,x = 0\\
\end{aligned}
\end{cases}
编号的方程式 - equation
\[\begin{equation}
z = (a+b)^4= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4.
\end{equation}\\
\]\begin{equation}
z = (a+b)^4= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4.
\end{equation}
多公式有编号 - align
\[\begin{align}
\nabla \cdot \mathbf{E} &= \frac{\rho}{\varepsilon_0} \\
\nabla \cdot \mathbf{B} &= 0 \\
\nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} &= \mu_0 \mathbf{J} + \mu_0\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}
\end{align}\\
\]\begin{align}
\nabla \cdot \mathbf{E} &= \frac{\rho}{\varepsilon_0} \\
\nabla \cdot \mathbf{B} &= 0 \\
\nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} &= \mu_0 \mathbf{J} + \mu_0\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}
\end{align}
多公式无编号 - align*
多公式无编号
\[\begin{align*} E = mc^2 \\ e^{i\pi} + 1 = 0 \end{align*}\\ \]\begin{align*}
E = mc^2 \\
e^{i\pi} + 1 = 0
\end{align*}
单方程式多行写
\[\begin{align*} z & = (a+b)^4 \\ & = (a+b)^2(a+b)^2 \\ & = (a^2+2ab+b^2)(a^2+2ab+b^2) \\ & = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 \end{align*}\\ \]\begin{align*}
z & = (a+b)^4 \\
& = (a+b)^2(a+b)^2 \\
& = (a^2+2ab+b^2)(a^2+2ab+b^2) \\
& = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
\end{align*}
\[\begin{align*}
& a_1 \wedge a_2 \wedge \cdots \wedge (a_i \wedge x) \wedge a_{i + 1} \wedge \cdots \wedge a_n\\
& = (a_1 \wedge a_2 \wedge \cdots \wedge a_i \wedge a_{i + 1} \wedge \cdots \wedge a_n) \wedge x\\
& = x \wedge x\\
& = 0
\end{align*}
\]\begin{align*}
& a_1 \wedge a_2 \wedge \cdots \wedge (a_i \wedge x) \wedge a_{i + 1} \wedge \cdots \wedge a_n\\
& = (a_1 \wedge a_2 \wedge \cdots \wedge a_i \wedge a_{i + 1} \wedge \cdots \wedge a_n) \wedge x\\
& = x \wedge x\\
& = 0
\end{align*}
自定义对齐方式
在 align
或 align*
环境下,在公式左侧添加 &
可以使得公式左对齐,否则默认为居中对齐。
实际上将 &
的作用是为公式设置一个对齐点,多个公式的对齐点会在同一竖线上。
- 将标记的 \(=\) 和 \(+\) 之间保持对齐,在对应
=
和+
前标记&
\begin{align*}
\phi(N) &= N - \frac{N}{p_1} - \frac{N}{p_2} \cdots - \frac{N}{p_k}\\
& +\frac{N}{p_1p_2} + \frac{N}{p_1p_3} + \cdots\\
& +\frac{N}{p_1p_2p_3} - \frac{N}{p_2p_2p_4} \cdots\\
& +\cdots \\
& = N \times \frac{p_1 - 1}{p_1} \times \frac{p_2 - 1}{p_2}\cdots \times \frac{p_m - 1}{p_m}
\end{align*}
- 将 \(\cdots\) 之间保持对齐,在所有
\cdots
前标记&
\begin{align*}
\phi(N) = N - \frac{N}{p_1} - \frac{N}{p_2} &\cdots - \frac{N}{p_k}\\
+\frac{N}{p_1p_2} + \frac{N}{p_1p_3} + &\cdots\\
+\frac{N}{p_1p_2p_3} - \frac{N}{p_2p_2p_4} &\cdots\\
+ &\cdots \\
= N \times \frac{p_1 - 1}{p_1} \times \frac{p_2 - 1}{p_2} &\cdots \times \frac{p_m - 1}{p_m}
\end{align*}
方程组
\[\begin{cases} x + y - z = 0 \\ 2x - y + z = 2 \\ x + y + 2z = 4 \end{cases}\\ \]\begin{cases}
x + y - z = 0 \\
2x - y + z = 2 \\
x + y + 2z = 4
\end{cases}
或者
\left\{ \begin{aligned}
x + y - z = 0 \\
2x - y + z = 2 \\
x + y + 2z = 4
\end{aligned} \right.
\left\{ 公式 \right.
实现只有左边出现界定符大括号{
\begin{aligned} 公式 \end{aligned}
实现公式右对齐
转载, 忘了从哪来的, 侵删
标签:Latex,begin,end,color,text,frac,cdots,符号表 From: https://www.cnblogs.com/YzaCsp/p/18574398