首页 > 其他分享 >Latex 符号表

Latex 符号表

时间:2024-11-28 15:46:49浏览次数:8  
标签:Latex begin end color text frac cdots 符号表

Latex 公式速查

本文仅提供的能够在 \(Markdown\) 中使用的 \(Latex\) 公式。

如何插入 \(Latex\) 公式?

  • 行内公式:$公式$
  • 独立公式:$$公式$$

函数

对数与指数

\(a^x\) a^x
\(\sqrt{x}\) \sqrt{x}
\(\sqrt[3]{x}\) \sqrt[3]{x}
\(\sqrt[a]{x}\) \sqrt[a]{x}
\(\exp x\) \exp x
\(\log x\) \log x
\(\lg x\) \lg x
\(\ln x\) \ln x

三角函数

\(\sin x\) \sin x
\(\cos x\) \cos x
\(\tan x\) \tan x
\(\cot x\) \cot x
\(\sec x\) \sec x
\(\csc x\) \csc x
\(\arcsin x\) \arcsin x
\(\arccos x\) \arccos x
\(\arctan x\) \arctan x
\(\sinh x\) \sinh x
\(\cosh x\) \cosh x
\(\tanh x\) \tanh x

其他函数

最小值: \(\min x\) \min x
最大值: \(\max x\) \max x
最大公约数: \(\gcd x\) \gcd x
角度: \(\deg\) \deg
极限: \(\lim_{x \to \infty}f(x)\) \lim_{x \to \infty}f(x)
上确界: \(\sup M\) \sup M
下确界: \(\inf M\) \inf M
行列式: \(\det A\) \det A
维数: \(\dim A\) \dim A
矩阵kernel: \(\ker A\) \ker A
投影: \(\Pr\) \Pr
同调群:\(\hom\) \hom
复数的幅角: \(\arg z\) \arg z
向下取整: \(\lfloor x \rfloor\) \lfloor x \rfloor
向上取整: \(\lceil x \rceil\) \lceil x \rceil
自定义函数: \(\operatorname{function} x\) \operatorname{function} x

符号

运算符

\(\pm\) \pm
\(\mp\) \mp
\(\dotplus\) \dotplus
\(\times\) \times
\(\div\) \div
\(\frac{a}{b}\) \frac{a}{b}
\(\divideontimes\) \divideontimes
\(\backslash\) \backslash
\(\cdot\) \cdot
\(\ast\) \ast
\(\circ\) \circ
\(\bullet\) \bullet
\(\boxplus\) \boxplus
\(\boxminus\) \boxminus
\(\boxtimes\) \boxtimes
\(\boxdot\) \boxdot
\(\oplus\) \oplus
\(\ominus\) \ominus
\(\otimes\) \otimes
\(\oslash\) \oslash
\(\odot\) \odot
\(\bigoplus\) bigoplus
\(\bigotimes\) \bigotimes
\(\bigodot\) \bigodot

集合

\(\{ \}\) \{ \}
\(\empty\) \empty
\(\varnothing\) \varnothing
\(\in\) \in
\(\not\in\) \notin\not\in
\(\ni\) \ni
\(\notni\) \notni\not\ni
\(\cap\) \cap
\(\Cap\) \Cap
\(\sqcap\) \sqcap
\(\bigcap\) \bigcap
\(\cup\) \cup
\(\Cup\) \Cup
\(\sqcup\) \sqcup
\(\bigcup\) \bigcup
\(\bigsqcup\) \bigscup
\(\uplus\) \uplus
\(\biguplus\) \biguplus
\(\subset\) \subset
\(\Subset\) \Subset
\(\sqsubset\) \sqsubset
\(\supset\) \supset
\(\Supset\) \Supset
\(\sqsupset\) \sqsupset
\(\subseteq\) \subseteq
\(\nsubseteq\) \nsubseteq
\(\subsetneq\) \subsetneq
\(\varsubsetneq\) \varsubsetneq
\(\sqsubseteq\) \sqsubseteq
\(\supseteq\) \supseteq
\(\nsupseteq\) \nsupseteq
\(\supsetneq\) \supsetneq
\(\varsupsetneq\) \varsupsetneq
\(\sqsupseteq\) \sqsupseteq
\(\sqsupset\) \sqsupset
\(\subseteqq\) \subseteqq
\(\nsubseteqq\) \nsubseteqq
\(\subsetneqq\) \subsetneqq
\(\varsubsetneqq\) \varsubsetneqq
\(\supseteqq\) \supseteqq
\(\nsupseteqq\) \nsupseteqq
\(\supsetneqq\) \supsetneqq
\(\varsupsetneqq\) \varsupsetneqq

关系符号

\(\ne\) \ne\neq
\(\equiv\) \equiv
\(\not\equiv\) \not\equiv
\(\doteq\) \doteq
\(\doteqdot\) \doteqdot
\(\sim\) \sim
\(\nsim\) \nsim
\(\backsim\) \backsim
\(\thicksim\) \thicksim
\(\simeq\) \simeq
\(\backsimeq\) \backsimeq
\(\eqsim\) \eqsim
\(\cong\) \cong
\(\ncong\) \ncong
\(\approx\) \approx
\(\thickapprox\) \thickapprox
\(\approxeq\) \approxeq
\(\asymp\) \asymp
\(\propto\) \propto
\(\varpropto\) \varpropto
\(\ngtr\) \ngtr
\(\gg\) \gg
\(\ggg\) \ggg
\(\not\ggg\) \not\ggg
\(\gtrdot\) \gtrdot
\(\ngtr\) \ngtr
\(\lneq\) \lneq
\(\leqq\) \leqq
\(\nleq\) \nleq
\(\nleqq\) \nleqq
\(\lneqq\) \lneqq
\(\lvertneqq\) \lvertneqq
\(\ge\) \ge
\(\geq\) \geq
\(\gneq\) \gneq
\(\geqq\) \geqq
\(\ngeq\) \ngeq
\(\ngeqq\) \ngeqq
\(\gneqq\) \gneqq
\(\gvertneqq\) \gvertneqq

几何符号

\(\parallel\) \parallel
\(\nparallel\) \nparallel
\(\shortparallel\) \shortparallel
\(\nshortparallel\) nshortparallel
\(\perp\) \perp
\(\angle\) \angle
\(\sphericalangle\) \sphericalangle
\(\measuredangle\) \measuredangle
\(45^\circ\) 45^\circ
\(\Box\) \Box
\(\blacksquare\) \blacksquare
\(\diamond\) \diamond
\(\Diamond\) \Diamond
\(\lozenge\) \lozenge
\(\blacklozenge\) \blacklozenge
\(\bigstar\) \bigstar
\(\bigcirc\) \bigcirc
\(\triangle\) \triangle
\(\bigtriangleup\) \bigtriangleup
\(\bigtriangledown\) \bigtriangledown
\(\vartriangle\) \vartriangle
\(\triangledown\) \triangledown
\(\blacktriangle\) \blacktriangle
\(\blacktriangledown\) \blacktriangledown
\(\blacktriangleleft\) \blacktriangleleft
\(\blacktriangleright\) \blacktriangleright

逻辑符号

\(\forall\) \forall
\(\exists\) \exists
\(\nexists\) \nexists
\(\therefore\) \therefore
\(\because\) \because
\(\And\) \And
\(\mid\) \mid
\(\lor\) \lor\vee
\(\land\) \land\wedge
\(\bar{q}\) \bar{q}
\(\overline{q}\) \overline{q}
\(\lnot\) \lnot\neg
\(\bot\) \bot
\(\top\) \top
\(\vdash\) \vdash
\(\dashv\) \dashv
\(\vDash\) \vDash
\(\Vdash\) \Vdash
\(\models\) \models
\(\ulcorner\) \ulcorner
\(\urcorner\) \urcorner
\(\llcorner\) \llcorner
\(\lrcorner\) \lrcorner

箭头 - arrow

\(\rightarrow\) \rightarrow
\(\nrightarrow\) \nrightarrow
\(\longrightarrow\) \longrightarrow
\(\Rightarrow\) \Rightarrow
\(\nRightarrow\) \nRightarrow
\(\Longrightarrow\) \Longrightarrow
\(\leftarrow\) \leftarrow
\(\nleftarrow\) n\leftarrow
\(\longleftarrow\) \longleftarrow
\(\Leftarrow\) \Leftarrow
\(\nLeftarrow\) \nLeftarrow
\(\Longleftarrow\) \Longleftarrow
\(\leftrightarrow\) \leftrightarrow
\(\nleftrightarrow\) \nleftrightarrow
\(\Leftrightarrow\) \Leftrightarrow
\(\nLeftrightarrow\) \nLeftrightarrow
\(\longleftrightarrow\) \longleftrightarrow
\(\iff\) iff
\(\Longleftrightarrow\) \Longleftrightarrow
\(\uparrow\) \uparrow
\(\downarrow\) \downarrow
\(\updownarrow\) \updownarrow
\(\Uparrow\) \Uparrow
\(\Downarrow\) \Downarrow
\(\nearrow\) \nearrow
\(\swarrow\) \swarrow
\(\nwarrow\) \nwarrow
\(\searrow\) \searrow
\(\rightharpoonup\) \rightharpoonup
\(\rightharpoondown\) \rightharpoondown
\(\leftharpoonup\) \leftharpoonup
\(\leftharpoondown\) \leftharpoondown
\(\upharpoonleft\) \upharpoonleft
\(\downharpoonleft\) \downharpoonleft
\(\upharpoonright\) \upharpoonright
\(\downharpoonright\) \downharpoonright
\(\rightleftharpoons\) \rightleftharpoons
\(\leftrightharpoons\) \leftrightharpoons
\(\curvearrowleft\) \curvearrowleft
\(\curvearrowright\) \curvearrowright
\(\circlearrowleft\) \circlearrowleft
\(\circlearrowright\) \circlearrowright
\(\Lsh\) \Lsh
\(\Rsh\) \Rsh
\(\upuparrows\) \upuparrows
\(\downdownarrows\) \downdownarrows
\(\leftleftarrows\) \leftleftarrows
\(\rightrightarrows\) \rightrightarrows
\(\stackrel{text}{\longrightarrow}\) \stackrel{text}{\longrightarrow}
\(\stackrel{text}{\longleftarrow}\) \stackrel{text}{\longleftarrow}
\(\stackrel{text}{\downarrow}\) \stackrel{text}{\downarrow}
\(\stackrel{text}{\uparrow}\) \stackrel{text}{\uparrow}

希腊字母

\(\alpha\) \alpha
\(\beta\) \beta
\(\gamma\) \gamma
\(\delta\) \delta
\(\epsilon\) \epsilon
\(\varepsilon\) \varepsilon
\(\zeta\) \zeta
\(\eta\) \eta
\(\theta\) \theta
\(\vartheta\) \vartheta
\(\iota\) \iota
\(\kappa\) \kappa
\(\lambda\) \lambda
\(\mu\) \mu
\(\nu\) \nu
\(\xi\) \xi
\(\pi\) \pi
\(\varpi\) \varpi
\(\rho\) \rho
\(\varrho\) \varrho
\(\sigma\) \sigma
\(\varsigma\) \varsigma
\(\tau\) \tau
\(\upsilon\) \upsilon
\(\phi\) \phi
\(\varphi\) \varphi
\(\chi\) \chi
\(\psi\) \psi
\(\omega\) \omega
\(\Gamma\) \Gamma
\(\Delta\) \Delta
\(\Theta\) \Theta
\(\Lambda\) \Lambda
\(\Xi\) \Xi
\(\Pi\) \Pi
\(\Sigma\) \Sigma
\(\Upsilon\) \Upsilon
\(\Phi\) \Phi
\(\Psi\) \Psi
\(\Omega\) \Omega

字体

黑板报粗体

只对大写字母有效

\(\mathbb{FONT}\) \mathbb{FONT}

粗体

对大小写字母、希腊字母都有效

\(\mathbf{FONT}\) \mathbf{FONT}
\(\mathbf{font}\) \mathbf{font}
\(\mathbf{\digamma\Theta\Nu\Tau}\) \mathbf{\digamma\Theta\Nu\Tau}

斜体

\(\mathit{1234567890}\) \mathit{1234567890}
\(\mathit{abcdefg}\) \mathit{abcdefg}
\(\mathit{ABCDEFG}\) \mathit{ABCDEFG}

无衬线体

\(\mathsf{ABCDEFG}\) \mathsf{ABCDEFG}

手写体

\(\mathcal{ABCDEFG}\) \mathcal{ABCDEFG}

注释文本

text{} 在公式中添加文本: \(\text{注释信息}\) \text{注释信息}

颜色

格式:

\color{颜色}{文本}

旧版浏览器支持:

\(\color{gray}{text}\) \color{gray}{text}
\(\color{silver}{text}\) \color{silver}{text}
\(\color{blue}{text}\) \color{blue}{text}
\(\color{yellow}{text}\) \color{yellow}{text}
\(\color{red}{text}\) \color{red}{text}
\(\color{lime}{text}\) \color{lime}{text}
\(\color{green}{text}\) \color{green}{text}
\(\color{fuchsia}{text}\) \color{fuchsia}{text}

较新浏览器支持 \color{#rgb}{text} 来自定义更多的颜色,#rgbr、g、b 分别可以是十六进制表示的 0~255 的数。

\(\color{#ffdddd}{text}\) \color{#ffdddd}{text}
\(\color{#ff8888}{text}\) \color{#ff8888}{text}
\(\color{#ffaa11}{text}\) \color{#ffaa11}{text}
\(\color{#ffccaa}{text}\) \color{#ffccaa}{text}
\(\color{#ffdd66}{text}\) \color{#ffdd66}{text}
\(\color{#ffbbee}{text}\) \color{#ffbbee}{text}
\(\color{#aaaaff}{text}\) \color{#aaaaff}{text}
\(\color{#7777ff}{text}\) \color{#7777ff}{text}
\(\color{#66ccff}{text}\) \color{#66ccff}{text}
\(\color{#99ccff}{text}\) \color{#99ccff}{text}
\(\color{#00eeff}{text}\) \color{#00eeff}{text}
\(\color{#bbffee}{text}\) \color{#bbffee}{text}
\(\color{#99ff99}{text}\) \color{#99ff99}{text}
\(\color{#44bb66}{text}\) \color{#44bb66}{text}
\(\color{#44ff77}{text}\) \color{#44ff77}{text}
\(\color{#0088ff}{text}\) \color{#0088ff}{text}
\(\color{#22cc88}{text}\) \color{#22cc88}{text}
\(\color{#777777}{text}\) \color{#777777}{text}
\(\color{#aaaaaa}{text}\) \color{#aaaaaa}{text}
\(\color{#f0f0f0}{text}\) \color{#f0f0f0}{text}

空格

  • \, 表示一个窄空格,\(\frac{1}{6}\) M 的宽度
  • \\: 表示一个中等空格
  • \; 表示一个大空格
  • \quad 表示一个字母 M 宽度的空格
  • \qquad 表示两个 \quad 的宽度
  • \! 表示一个负的窄空格,缩进\(\frac{1}{6}M\) 的宽度
  • \\ 表示换行

\[\boxed{ \begin{array}{c|c} 窄空格 & a\,b \\ \hline 中等空格 & a\: b \\ \hline 大空格 & a\;b \\ \hline 字母M的宽度 & a\quad b \\ \hline 两个M的宽度 & a\qquad b \\ \hline 负窄空格 & a\!b \end{array}\\ } \]

上下标与积分等

\(x^2\) x^2

\(x^{a + b}\) x^{a+b}

\(a_1\) a_1

\(a_{ij}\) a_{ij}

前置上下标: \({}_1^2\!X_3^4\) {}_1^2\!x_3^4

正上方标记:\(\sum\limits^n\) \sum\limits^n

正下方标记:\(\min\limits_{i \leq k \leq j - 1}\) \min\limits_{i \leq k \leq j - 1}

导数: \(x^\prime\) x^\primex'

导数点: \(\dot{x}\) \dot{x}

向量:\(\vec{x}\) \vec{x}

左长箭头: \(\overleftarrow{a + b}\) \overleftarrow{a + b}

右长箭头: \(\overrightarrow{a + b}\) \overrightarrow{a + b}

\(\widehat{abc}\) \widehate{abc}

上弧: \(\overset{\frown}{AB}\) \overset{\frown}{AB}

上划线: \(\overline{abc}\) \overline{abc}

下划线: \(\underline{abc}\) \underline{abc}

上括号: \(\overbrace{1 + 2 + \cdots + 100}\) \overbrace{1 + 2 + \cdots + 100}

上括号示例: \(\begin{matrix}5050\\\overbrace{1 + 2 + \cdots + 100}\end{matrix}\) \begin{matrix}5050\\\overbrace{1 + 2 + \cdots + 100}\end{matrix}

\(\overbrace{\sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}}^{n\ \text{个根号}}\) \overbrace{\sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}}^{n\ \text{个根号}}

下括号: \(\underbrace{1 + 2 + \cdots + 100}\) \underbrace{1 + 2 + \cdots + 100}

下括号示例: \(\begin{matrix}\underbrace{1 + 2 + \cdots + 100}\\5050\end{matrix}\) \begin{matrix}\underbrace{1 + 2 + \cdots + 100}\\5050\end{matrix}

\(\underbrace{\sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}}_{n\ \text{个根号}}\) $\underbrace{\sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}}_{n\ \text{个根号}}$

求和: \(\sum_{k = 1}^{\infty} f(x)\) \sum_{k = 1}^{\infty} f(x)

求和: \(\Sigma_{x = 1}^{\infty} f(x)\) \Sigma_{x = 1}^{t = \infty} f(x)

求积: \(\prod_{i = 1}^{n} x_i\) \prod_{i = 1}^{n} x_i

上积: \(\coprod_{i = 1}^{n} x_i\) \coprod_{i = 1}^{n} x_i

极限: \(\lim_{x\to\infty} f(x)\) \lim_{x\to\infty} f(x)

积分: \(\int_{a}^{b} f(x)dx\) \int_{a}^{b} f(x)dx

双重积分: \(\iint_{a}^{b} f(x) \, dx \, dy\) \iint_{a}^{b} f(x) \, dx \, dy

三重积分: \(\iiint_a^{b} f(x) \, dx \, dy \, dz\) \iiint_a^{b} f(x) \, dx \, dy \, dz

闭合的曲线、曲面积分: \(\oint_{C} x^2 \, dx+ y \, dy\) \oint_{C} x^2 \, dx+ y \, dy

分式

分数:
\(\frac{a + b}{c + d}\) \frac{a + b}{c + d}
\(\frac{dx}{dy}\) \frac{dx}{dy}

连分式: \(\cfrac{1}{2 + \cfrac{3}{4 + \cfrac{5}{6 + \cdots}}}\) \cfrac{1}{2 + \cfrac{3}{4 + \cfrac{5}{6 + \cdots}}}

\(\cfrac{a_1}{b1 + \cfrac{a_2}{b_2 + \cfrac{a_3}{b_3 + \cdots}}}\) \cfrac{a_1}{b1 + \cfrac{a_2}{b_2 + \cfrac{a_3}{b_3 + \cdots}}}

二项式系数: \(C_n^r = \dbinom{n}{r}\) C_n^r = \dbinom{n}{r}

矩阵

语法:

\begin{类型}
公式
\end{类型}

矩阵中 & 分隔元素,\\ 进行换行
横三点: \(\cdots\) \cdots
竖三点: \(\vdots\) \vdots
斜三点: \(\ddots\) \ddots

无框矩阵 - matrix

\[\begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix}\\ \]

\begin{matrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{matrix}

行列式 - vmatrix

\[\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{21} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}\\ \]

\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{21} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}

范数矩阵 - Vmatrix

\[\begin{Vmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,1} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{Vmatrix}\\ \]

\begin{Vmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,1} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n,1} & a_{n,2} & \cdots & a_{n,n}
\end{Vmatrix}

小括号矩阵 - pmatrix

\[\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}\\ \]

\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}

大括号矩阵 - Bmatrix

\[\begin{Bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{Bmatrix}\\ \]

\begin{Bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}  
\end{Bmatrix}

方括号矩阵 - bmatrix

\[\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix}\\ \]

\begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} 
\end{bmatrix}

边框 - boxed{}

\[\begin{bmatrix} \boxed{-1} & 3 & 0 & 2 \\ 0 & \boxed{1} & 3 & 1 \\ 0 & 0 & 0 & \boxed{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}\\ \]

\begin{bmatrix}
\boxed{-1} & 3 & 0 & 2 \\
0 & \boxed{1} & 3 & 1 \\
0 & 0 & 0 & \boxed{2} \\
0 & 0 & 0 & 0
\end{bmatrix}\\

数组 - array

\[\begin{array}{} a & b \\ c & d \end{array}\\ \]

\begin{array}{}
a & b \\
c & d  
\end{array}

定界符

语法:

\left 符号
公式
\right 符号

竖线

\[\left | \begin{array}{} a_{11} & a_{12} \\ a_{13} & a_{14} \\ \end{array} \right | \\ \]

\left |
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right | 

小括号

\[\left ( \begin{array}{} a_{11} & a_{12} \\ a_{13} & a_{14} \\ \end{array} \right ) \\ \]

\left (
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right )

大括号

\[\left \{ \begin{array}{} a_{11} & a_{12} \\ a_{13} & a_{14} \\ \end{array} \right \}\\ \]

\left \{
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right \}

注:{} 为特殊字符,无法直接使用,应使用 \{\} 来输出

方括号

\[\left [ \begin{array}{} a_{11} & a_{12} \\ a_{13} & a_{14} \\ \end{array} \right ]\\ \]

\left [
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right ]

分割线

实竖线

\[\left [ \begin{array}{c|c|c|c|c} a_{11} & a_{12} & a_{13} & a_{14} & a_{15}\\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25}\\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35}\\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45}\\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{array} \right ]\\ \]

\left [
\begin{array}{c|c|c|c|c}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15}\\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25}\\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35}\\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45}\\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55} 
\end{array}\\
\right ]

虚竖线

\[\left [ \begin{array}{c:c:c:c:c} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{array} \right ]\\ \]

\left [
\begin{array}{c:c:c:c:c}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}
\right ]\\

实横线 - \hline

\[\left [ \begin{array}{} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ \hline a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ \hline a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ \hline a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ \hline a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{array} \right ]\\ \]

\left [
\begin{array}{}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
\hline
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
\hline
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
\hline
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
\hline
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}
\right ]

虚横线 - \hdashline

\[\left [ \begin{array}{} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ \hdashline a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ \hdashline a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ \hdashline a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ \hdashline a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{array} \right ]\\ \]

\left [
\begin{array}{}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
\hdashline
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
\hdashline
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
\hdashline
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
\hdashline
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}
\right ]

应用 - 分块矩阵

\[\left [ \begin{array}{cc:cc} 1 & 0 & 1 & -2 \\ 0 & 1 & 0 & 1 \\ \hdashline -1 & 2 & -1 & 0 \\ 0 & -1 & 0 & -1 \end{array} \right ]\\ \]

\left [
\begin{array}{cc:cc}
1 & 0 & 1 & -2 \\
0 & 1 & 0 & 1 \\
\hdashline
-1 & 2 & -1 & 0 \\
0 & -1 & 0 & -1
\end{array}
\right ]

应用 - 制作表格

\[\boxed{ \begin{array}{c|c} 矩阵类型 & 关键字 \\ \hline |A| & vmatrix \\ \hline \parallel & Vmatrix \\ \hline () & pmatrix \\ \hline \{\} & Bmatrix \\ \hline [\ ] & bmatrix \end{array} }\\ \]

\boxed{
    \begin{array}{c|c}
    矩阵类型 & 关键字 \\ \hline
    |A| & vmatrix \\ \hline
    \parallel & Vmatrix \\ \hline
    () & pmatrix \\ \hline
    \{\} & Bmatrix \\ \hline
    [\ ] & bmatrix
    \end{array}
}

条件表达式,方程式

条件表达式 - cases

\[f(x) = \begin{cases} \begin{aligned} \frac{\sin x}{|x|},x \ne 0 \\ 1,x = 0\\ \end{aligned} \end{cases}\\ \]

f(x) =
\begin{cases}
\begin{aligned}
\frac{\sin x}{|x|},x \ne 0 \\
1,x = 0\\
\end{aligned}
\end{cases}

编号的方程式 - equation

\[\begin{equation} z = (a+b)^4= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4. \end{equation}\\ \]

\begin{equation}
z = (a+b)^4= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4.
\end{equation}

多公式有编号 - align

\[\begin{align} \nabla \cdot \mathbf{E} &= \frac{\rho}{\varepsilon_0} \\ \nabla \cdot \mathbf{B} &= 0 \\ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \times \mathbf{B} &= \mu_0 \mathbf{J} + \mu_0\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{align}\\ \]

\begin{align} 
\nabla \cdot \mathbf{E} &= \frac{\rho}{\varepsilon_0} \\
 \nabla \cdot \mathbf{B} &= 0 \\
 \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\
 \nabla \times \mathbf{B} &= \mu_0 \mathbf{J} + \mu_0\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}
 \end{align}

多公式无编号 - align*

多公式无编号

\[\begin{align*} E = mc^2 \\ e^{i\pi} + 1 = 0 \end{align*}\\ \]

\begin{align*}
E = mc^2 \\
e^{i\pi} + 1 = 0
\end{align*}

单方程式多行写

\[\begin{align*} z & = (a+b)^4 \\ & = (a+b)^2(a+b)^2 \\ & = (a^2+2ab+b^2)(a^2+2ab+b^2) \\ & = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 \end{align*}\\ \]

\begin{align*}
   z & = (a+b)^4 \\
     & = (a+b)^2(a+b)^2 \\
     & = (a^2+2ab+b^2)(a^2+2ab+b^2) \\
     & = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
 \end{align*}

\[\begin{align*} & a_1 \wedge a_2 \wedge \cdots \wedge (a_i \wedge x) \wedge a_{i + 1} \wedge \cdots \wedge a_n\\ & = (a_1 \wedge a_2 \wedge \cdots \wedge a_i \wedge a_{i + 1} \wedge \cdots \wedge a_n) \wedge x\\ & = x \wedge x\\ & = 0 \end{align*} \]

\begin{align*}
& a_1 \wedge a_2 \wedge \cdots \wedge (a_i \wedge x) \wedge a_{i + 1} \wedge \cdots \wedge a_n\\
& = (a_1 \wedge a_2 \wedge \cdots \wedge a_i \wedge a_{i + 1} \wedge \cdots \wedge a_n) \wedge x\\
& = x \wedge x\\
& = 0
\end{align*}

自定义对齐方式

alignalign* 环境下,在公式左侧添加 & 可以使得公式左对齐,否则默认为居中对齐。
实际上将 & 的作用是为公式设置一个对齐点,多个公式的对齐点会在同一竖线上。

  • 将标记的 \(=\) 和 \(+\) 之间保持对齐,在对应 =+ 前标记 &

\[\begin{align*} \phi(N) &= N - \frac{N}{p_1} - \frac{N}{p_2} \cdots - \frac{N}{p_k}\\ & +\frac{N}{p_1p_2} + \frac{N}{p_1p_3} + \cdots\\ & +\frac{N}{p_1p_2p_3} - \frac{N}{p_2p_2p_4} \cdots\\ & +\cdots \\ & = N \times \frac{p_1 - 1}{p_1} \times \frac{p_2 - 1}{p_2}\cdots \times \frac{p_m - 1}{p_m} \end{align*} \]

\begin{align*}
\phi(N) &= N - \frac{N}{p_1} - \frac{N}{p_2} \cdots - \frac{N}{p_k}\\
& +\frac{N}{p_1p_2} + \frac{N}{p_1p_3} + \cdots\\
& +\frac{N}{p_1p_2p_3} - \frac{N}{p_2p_2p_4} \cdots\\
& +\cdots \\
& = N \times \frac{p_1 - 1}{p_1} \times \frac{p_2 - 1}{p_2}\cdots \times \frac{p_m - 1}{p_m}
\end{align*}
  • 将 \(\cdots\) 之间保持对齐,在所有 \cdots 前标记 &

\[\begin{align*} \phi(N) = N - \frac{N}{p_1} - \frac{N}{p_2} &\cdots - \frac{N}{p_k}\\ +\frac{N}{p_1p_2} + \frac{N}{p_1p_3} + &\cdots\\ +\frac{N}{p_1p_2p_3} - \frac{N}{p_2p_2p_4} &\cdots\\ +&\cdots \\ = N \times \frac{p_1 - 1}{p_1} \times \frac{p_2 - 1}{p_2} &\cdots \times \frac{p_m - 1}{p_m} \end{align*} \]

\begin{align*}
\phi(N) = N - \frac{N}{p_1} - \frac{N}{p_2} &\cdots - \frac{N}{p_k}\\
+\frac{N}{p_1p_2} + \frac{N}{p_1p_3} + &\cdots\\
+\frac{N}{p_1p_2p_3} - \frac{N}{p_2p_2p_4} &\cdots\\
+ &\cdots \\
= N \times \frac{p_1 - 1}{p_1} \times \frac{p_2 - 1}{p_2} &\cdots \times \frac{p_m - 1}{p_m}
\end{align*}

方程组

\[\begin{cases} x + y - z = 0 \\ 2x - y + z = 2 \\ x + y + 2z = 4 \end{cases}\\ \]

\begin{cases}
x + y - z = 0 \\
2x - y + z = 2 \\
x + y + 2z = 4
\end{cases}

或者

\left\{ \begin{aligned}
x + y - z = 0 \\
2x - y + z = 2 \\
x + y + 2z = 4
\end{aligned} \right.

\left\{ 公式 \right. 实现只有左边出现界定符大括号 {
\begin{aligned} 公式 \end{aligned} 实现公式右对齐

转载, 忘了从哪来的, 侵删

标签:Latex,begin,end,color,text,frac,cdots,符号表
From: https://www.cnblogs.com/YzaCsp/p/18574398

相关文章

  • 将 Python 计算代码转换为渲染的 LaTeX,就像手写一样清晰易懂!
    handcalcs是一个非常实用的开源Python库,它的特别之处在于能够将Python计算结果转换为渲染的LaTeX格式,使得复杂的计算过程像手写公式一样清晰、直观。这个工具对工程师、科学家以及任何从事数值计算的人来说,都可以大幅提高表达计算过程的可读性和透明度。handcalcs......
  • LaTex和TexStudio的下载与安装教程(超详细)
    目录文章自述初识:LaTex初识:TexStudio一、下载:LaTex和TexStudio二、安装:LaTex1.下载安装包后,解压到当前文件夹2.右键【texlive.iso】,选择解压到【texlive\】3.双击【texlive】文件夹4.找到【install-tl-windows.bat】,右键【以管理员身份运行】5.点击【修改】6.点击【......
  • 【LaTeX】13表格梳理:基本表格、跨行(multirow)和跨列(multicolumn)表格
    【LaTeX】表格梳理:基本表格、跨行(multirow)和跨列(multicolumn)表格写在最前面一、基本表格1.表头标题2.常用选项[htbp]3.其他二、表格美化1.跨列(multicolumn)2.跨行(multirow)三、全部latex代码四、小结......
  • LaTeX 教學系列 (III):基本設定
    LaTeX教學系列(II):第一份LaTeX文件裡面,我們提到了如何建立第一份文件,並且根據不同的文件類別使用章節標題。文章目錄TeX世界的巴別塔LaTeX的裝備:套件買裝備:安裝與使用套件說明書:CTANLaTeX百變怪:設定文字設定字體大小設定字體系列設定字型設定中文LaTeX的服裝:......
  • LaTeX 教學系列 (II):第一份 LaTeX 文件
    在上一篇文章LaTeX教學系列(I):LaTeX簡介中,提到了如何選擇編譯器與編輯器,以及一些LaTeX的基本操作,包含下指令、註解某段指令、開啟環境與章節深度設定。文章目錄LaTeX文件的工廠:文件環境設定資料夾的設定如何快速做品管:資料夾樹狀結構實際操作文件類別設定關於縮......
  • 打造高效科研利器:在Mac上轻松配置LaTeX写作环境
    LaTeX是一款在科研工作者中广泛使用的排版工具,常用于排版论文、书籍和制作演示幻灯片等。许多科研人员使用macOS操作系统,本文介绍了几种在macOS上配置LaTeX写作环境的方法,供大家参考。如果觉得有帮助,请点赞支持!如果文中有纰漏,请在评论区指出,我会及时修正。一、安装MacTeX......
  • Matplotlib 使用 LaTeX 渲染图表中的文本、标题和数学公式
    Matplotlib使用LaTeX渲染图表中的文本、标题和数学公式Matplotlib是一个功能强大的Python库,用于绘制各种高质量的图表和图形。在许多科研和技术文档中,数学公式是不可或缺的一部分,LaTeX提供了精美的数学公式渲染能力。Matplotlib支持通过LaTeX来渲染图表中的文本......
  • 学习笔记 - 知识图谱的符号表示方法
    学习笔记-知识图谱的符号表示方法说明:首次发表日期:2024-09-13个人阅读学习并摘录成笔记知识表示的相关名词定义以下内容摘录自KnowledgeGraphsApplied2.3小节,然后AI翻译+人工润色。实体(Entities)---表示知识的核心概念,其他所有东西都是围绕其构建的。实体可以是......
  • Latex 两版排版下的长公式换行(equation & split)
    举例:二元高斯分布的密度函数(\(X\),\(Y\)不独立)\(f_{X,Y}\left(x,y\right)=\frac{1}{2\pi\sigma_{x}\sigma_{y}\sqrt{1-\rho^2}}\exp\left(-\frac{1}{2(1-\rho)^2}\left[\frac{(x-\mu_{x})^2}{\sigma_{x}^2}-2\rho\frac{(x-\mu_{x})(t-\mu_{y})}{\sigma_{x}\si......
  • latex中引用参考文献[1],[2],[3]格式与[1-3]格式的方法
    1,latex中引用参考文献[1],[2]格式首先添加包:\usepackage{cite},在文中使用:\cite{a0,a1},来引用参考文献,效果如下:。如果我们引用3个参考文献,在文中使用:\cite{a0,a1,a2},效果如下:。参考文献排版:2,latex中引用参考文献[1-3]格式首先添加包:\usepackage[numbers,sort&compress]{n......