实验6:开源控制器实践——RYU
一、实验目的
- 能够独立部署RYU控制器;
- 能够理解RYU控制器实现软件定义的集线器原理;
- 能够理解RYU控制器实现软件定义的交换机原理。
二、实验环境
Ubuntu 20.04 Desktop amd64
三、实验要求
(一)基本要求
- 搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。
- 阅读Ryu文档的The First Application一节,运行当中的L2Switch,h1 ping h2或h3,在目标主机使用 tcpdump 验证L2Switch,分析L2Switch和POX的Hub模块有何不同。
L2Switch和POX的Hub模块都是通过泛洪向所有终端发送报文
但L2Switch是基于端口发送
POX的Hub模块是基于MAC地址发送,所以POX的Hub模块会下发流表项,而L2Switch则不会下发流表
3. 编程修改L2Switch.py,另存为L2xxxxxxxxx.py,使之和POX的Hub模块的变得一致?(xxxxxxxxx为学号)
(二)进阶要求
1.阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例,完成其代码的注释工作,并回答下列问题:
# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from ryu.base import app_manager from ryu.controller import ofp_event from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.ofproto import ofproto_v1_3 from ryu.lib.packet import packet from ryu.lib.packet import ethernet from ryu.lib.packet import ether_types class SimpleSwitch13(app_manager.RyuApp): OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] def __init__(self, *args, **kwargs): super(SimpleSwitch13, self).__init__(*args, **kwargs) self.mac_to_port = {}a) 代码当中的mac_to_port的作用是什么?
# 定义MAC地址列表,这里的mac_to_port表就是对应的交换机二层通信查询表 @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) def switch_features_handler(self, ev): datapath = ev.msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser # install table-miss flow entry # # We specify NO BUFFER to max_len of the output action due to # OVS bug. At this moment, if we specify a lesser number, e.g., # 128, OVS will send Packet-In with invalid buffer_id and # truncated packet data. In that case, we cannot output packets # correctly. The bug has been fixed in OVS v2.1.0.
# OpenFlow交换机完成协议握手之后,新增Table-miss Flow Entry到Flow table中为接收Packet-In信息做准备
# 接收到Switch features(Features reply)信息后就会新增Table-miss Flow Entry
# table-miss flow entry主要是为了第一次未能匹配流表的流packet-in,发给controller
# 下发table-miss流表项,让交换机对于不会处理的数据包通过packet-in消息上交给Ryu控制器!!!# 匹配数据包# 若数据包没有 match 任何一个普通 Flow Entry 时,则触发 Packet-In match = parser.OFPMatch()
# 通过预留端口ofproto.OFPP_CONTROLLER,将packet-in消息发送给controller,并通过ofproto.OFPCML_NO_BUFFE指明Racket-in消息的原因是table miss actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)]
# 仔细看发送的调用函数的参数,第一个是端口,第二是bufferid,若不为空,则去指定缓存区去查找流表 # 执行 add_flow() 方法以发送 Flow Mod 消息 self.add_flow(datapath, 0, match, actions) # priority = 0 ,优先级最低,为了所有流表都匹配不到的时候,才会发送到controller def add_flow(self, datapath, priority, match, actions, buffer_id=None): # 新增流表项
ofproto = datapath.ofproto parser = datapath.ofproto_parser inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] # 通过 Flow Mod 消息将 Flow Entry 新增到 Flow table 中
# if语句,表示流表下发缓存区id有无来区分下发,有缓存区id,到对应缓存区下发,无则自动分配,不传参buffer_id
if buffer_id: mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id, priority=priority, match=match, instructions=inst) else: mod = parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst) datapath.send_msg(mod) @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def _packet_in_handler(self, ev): # If you hit this you might want to increase # the "miss_send_length" of your switch if ev.msg.msg_len < ev.msg.total_len: self.logger.debug("packet truncated: only %s of %s bytes", ev.msg.msg_len, ev.msg.total_len) msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser in_port = msg.match['in_port'] pkt = packet.Packet(msg.data) eth = pkt.get_protocols(ethernet.ethernet)[0] if eth.ethertype == ether_types.ETH_TYPE_LLDP: # ignore lldp packet return dst = eth.dst src = eth.src dpid = format(datapath.id, "d").zfill(16) self.mac_to_port.setdefault(dpid, {}) self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port) # learn a mac address to avoid FLOOD next time. self.mac_to_port[dpid][src] = in_port # 判断转发的数据包的连接端口# 目的 MAC 位址若存在于 MAC 地址表,则判断该连接端口号码为输出。# 反之若不存在于 MAC 地址表则 OUTPUT action 类别的实体并生成 flooding( OFPP_FLOOD )给目的连接端口使用。 if dst in self.mac_to_port[dpid]: out_port = self.mac_to_port[dpid][dst] else: out_port = ofproto.OFPP_FLOOD actions = [parser.OFPActionOutput(out_port)] # install a flow to avoid packet_in next time if out_port != ofproto.OFPP_FLOOD: match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src) # verify if we have a valid buffer_id, if yes avoid to send both # flow_mod & packet_out if msg.buffer_id != ofproto.OFP_NO_BUFFER: self.add_flow(datapath, 1, match, actions, msg.buffer_id) return else: self.add_flow(datapath, 1, match, actions)
# 在 MAC 地址表中找寻目的 MAC 地址,若是有找到则发送 Packet-Out 讯息,并且转送数据包。 data = None if msg.buffer_id == ofproto.OFP_NO_BUFFER: data = msg.data
mac_to_port表就是对应的交换机二层通信查询表
b) simple_switch和simple_switch_13在dpid的输出上有何不同?
simple_switch_13会用0在dpid前填充至总长度为16,而simple_switch直接输出dpid。
c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?
下发table-miss流表项,让交换机对于不会处理的数据包通过packet-in消息上交给Ryu控制器
若数据包没有 match 任何一个普通 Flow Entry 时,则触发 Packet-In
d) simple_switch_13是如何实现流规则下发的?
获取源端口目的端口,以及交换机id,先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址,如果没有则进行洪泛转发。
如果学习过该mac地址,则查看是否有buffer_id,如果有的话,则在添加流动作时加上buffer_id,向交换机发送流表。
e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?
switch_features_handler下发流表的优先级比_packet_in_handler高
2.编程实现和ODL实验的一样的硬超时功能。
# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from ryu.base import app_manager from ryu.controller import ofp_event from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.ofproto import ofproto_v1_3 from ryu.lib.packet import packet from ryu.lib.packet import ethernet from ryu.lib.packet import ether_types class SimpleSwitch13(app_manager.RyuApp): OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] def __init__(self, *args, **kwargs): super(SimpleSwitch13, self).__init__(*args, **kwargs) self.mac_to_port = {} @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) def switch_features_handler(self, ev): datapath = ev.msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser # install table-miss flow entry # # We specify NO BUFFER to max_len of the output action due to # OVS bug. At this moment, if we specify a lesser number, e.g., # 128, OVS will send Packet-In with invalid buffer_id and # truncated packet data. In that case, we cannot output packets # correctly. The bug has been fixed in OVS v2.1.0. match = parser.OFPMatch() actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)] self.add_flow(datapath, 0, match, actions) def add_flow(self, datapath, priority, match, actions, buffer_id=None, hard_timeout=0): ofproto = datapath.ofproto parser = datapath.ofproto_parser inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] if buffer_id: mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id, priority=priority, match=match, instructions=inst, hard_timeout=hard_timeout) else: mod = parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst, hard_timeout=hard_timeout) datapath.send_msg(mod) @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def _packet_in_handler(self, ev): # If you hit this you might want to increase # the "miss_send_length" of your switch if ev.msg.msg_len < ev.msg.total_len: self.logger.debug("packet truncated: only %s of %s bytes", ev.msg.msg_len, ev.msg.total_len) msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser in_port = msg.match['in_port'] pkt = packet.Packet(msg.data) eth = pkt.get_protocols(ethernet.ethernet)[0] if eth.ethertype == ether_types.ETH_TYPE_LLDP: # ignore lldp packet return dst = eth.dst src = eth.src dpid = format(datapath.id, "d").zfill(16) self.mac_to_port.setdefault(dpid, {}) self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port) # learn a mac address to avoid FLOOD next time. self.mac_to_port[dpid][src] = in_port if dst in self.mac_to_port[dpid]: out_port = self.mac_to_port[dpid][dst] else: out_port = ofproto.OFPP_FLOOD actions = [parser.OFPActionOutput(out_port)]\ actions_timeout=[] # install a flow to avoid packet_in next time if out_port != ofproto.OFPP_FLOOD: match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src) # verify if we have a valid buffer_id, if yes avoid to send both # flow_mod & packet_out if msg.buffer_id != ofproto.OFP_NO_BUFFER: self.add_flow(datapath, 2, match, actions_timeout, msg.buffer_id,hard_timeout=10) self.add_flow(datapath, 1, match, actions, msg.buffer_id) return else: self.add_flow(datapath, 2, match, actions_timeout, hard_timeout=10) self.add_flow(datapath, 1, match, actions) data = None if msg.buffer_id == ofproto.OFP_NO_BUFFER: data = msg.data out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port, actions=actions, data=data) datapath.send_msg(out)
(三)个人总结
这次实验难度很高,尤其是RYU的代码,分析的非常懊恼。基础的实验存在ryu-manager服务经常出现bug,需要清除缓存。
关于mininet查看流表的代码,OpenFlow10和OpenFlow13不一样,OpenFlow10的代码是dpctl dump-flows
OpenFlow13是dpctl dump-flows -O OpenFlow13
关于RYU的硬超时还是不太理解
参考资料
(9条消息) Ryu代码解读------simple_switch_13.py 解读_落了一地秋的博客-CSDN博客
(9条消息) SDN(三) RYU控制器相关笔记_梵高的向日葵丶的博客-CSDN博客_ryu控制器
标签:控制器,self,datapath,packet,msg,开源,ofproto,RYU,port From: https://www.cnblogs.com/cyh1117/p/16767373.html