首页 > 其他分享 >实验6:开源控制器实践——RYU

实验6:开源控制器实践——RYU

时间:2022-10-28 23:35:27浏览次数:71  
标签:控制器 额太难 datapath self ofproto 开源 msg RYU port

一、实验目的
能够独立部署RYU控制器;
能够理解RYU控制器实现软件定义的集线器原理;
能够理解RYU控制器实现软件定义的交换机原理。
二、实验环境
Ubuntu 20.04 Desktop amd64

三、实验要求
(一)基本要求
搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。


阅读Ryu文档的The First Application一节,运行当中的L2Switch,h1 ping h2或h3,在目标主机使用 tcpdump 验证L2Switch,分析L2Switch和POX的Hub模块有何不同。

二者实现的都是洪泛发送ICMP报文,所以在h2和h3可以看到都有抓到数据包。
不同之处在于:Ryu中,L2Switch下发的流表无法查看;而POX中Hub则可以查看
编程修改L2Switch.py,另存为L2xxxxxxxxx.py,使之和POX的Hub模块的变得一致?(xxxxxxxxx为学号)



(二)进阶要求
阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例,完成其代码的注释工作,并回答下列问题:

def __init__(self, *args, **kwargs):
    super(SimpleSwitch13, self).__init__(*args, **kwargs)
    self.mac_to_port = {}  # 定义保存mac地址到端口的一个映射

# 处理SwitchFeatures事件
@set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
def switch_features_handler(self, ev):
    datapath = ev.msg.datapath
    ofproto = datapath.ofproto
    parser = datapath.ofproto_parser

    # install table-miss flow entry
    #
    # We specify NO BUFFER to max_len of the output action due to
    # OVS bug. At this moment, if we specify a lesser number, e.g.,
    # 128, OVS will send Packet-In with invalid buffer_id and
    # truncated packet data. In that case, we cannot output packets
    # correctly.  The bug has been fixed in OVS v2.1.0.
    match = parser.OFPMatch()  # match指流表项匹配,OFPMatch()指不匹配任何信息
    actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                      ofproto.OFPCML_NO_BUFFER)]
    self.add_flow(datapath, 0, match, actions)

# add_flow()增加流表项
# datapath:指定的 Switch
# priority:此规则的优先权
# match:此规则的 Match 条件
# actions:动作
def add_flow(self, datapath, priority, match, actions, buffer_id=None):
    # 获取交换机信息
    ofproto = datapath.ofproto
    parser = datapath.ofproto_parser
    # 对action进行包装
    inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                         actions)]
    # 判断是否存在buffer_id,并生成mod对象
    if buffer_id:
        mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                priority=priority, match=match,
                                instructions=inst)
    else:
        mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                match=match, instructions=inst)
    # 发送出去
    datapath.send_msg(mod)

# 处理PacketIn事件
@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def _packet_in_handler(self, ev):
    # If you hit this you might want to increase
    # the "miss_send_length" of your switch
    if ev.msg.msg_len < ev.msg.total_len:
        self.logger.debug("packet truncated: only %s of %s bytes",
                          ev.msg.msg_len, ev.msg.total_len)
    # 解析数据结构
    msg = ev.msg    # ev.msg 是代表packet_in data structure对象
    datapath = msg.datapath
    # dp. ofproto 和 dp.ofproto_parser 是代表 Ryu 和交换机谈判的 OpenFlow 协议的对象
    # dp.ofproto and dp.ofproto_parser are objects that represent the OpenFlow protocol that Ryu and the switch negotiated
    ofproto = datapath.ofproto
    parser = datapath.ofproto_parser
    in_port = msg.match['in_port']  # 获取源端口

    pkt = packet.Packet(msg.data)
    eth = pkt.get_protocols(ethernet.ethernet)[0]

    if eth.ethertype == ether_types.ETH_TYPE_LLDP:
        # 忽略LLDP类型的数据包
        # ignore lldp packet
        return
    dst = eth.dst  # 获取目的端口
    src = eth.src  # 获取源端口

    dpid = format(datapath.id, "d").zfill(16)
    self.mac_to_port.setdefault(dpid, {})

    self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

    # 学习包的源地址,和交换机上的入端口绑定
    # learn a mac address to avoid FLOOD next time.
    self.mac_to_port[dpid][src] = in_port

    # 查看是否已经学习过该目的mac地址
    if dst in self.mac_to_port[dpid]:  # 如果目的地址存在于mac_to_port中
        out_port = self.mac_to_port[dpid][dst]
    # 否则,洪泛
    else:
        out_port = ofproto.OFPP_FLOOD  # OFPP_FLOOD标志表示应在所有端口发送数据包,即洪泛

    actions = [parser.OFPActionOutput(out_port)]

    # 下发流表避免下次触发 packet in 事件
    # install a flow to avoid packet_in next time
    if out_port != ofproto.OFPP_FLOOD:
        match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
        # verify if we have a valid buffer_id, if yes avoid to send both
        # flow_mod & packet_out
        if msg.buffer_id != ofproto.OFP_NO_BUFFER:
            self.add_flow(datapath, 1, match, actions, msg.buffer_id)
            return
        else:
            self.add_flow(datapath, 1, match, actions)
    data = None
    if msg.buffer_id == ofproto.OFP_NO_BUFFER:
        data = msg.data

    # 发送Packet_out数据包
    out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                              in_port=in_port, actions=actions, data=data)
    # 发送流表
    datapath.send_msg(out)

`

a) 代码当中的mac_to_port的作用是什么?
答:
保存mac地址到交换机端口的映射
b) simple_switch和simple_switch_13在dpid的输出上有何不同?
答:
在simple_switch_13.py中为dpid = format(datapath.id, "d").zfill(16)
在simple_switch.py中为dpid = datapath.id
在simple_switch_13.py中使用了zfill() 方法返回指定长度为16的字符串,原字符串右对齐,前面填充0;而simple_switch.py直接输出dpid
c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?
答:
simple_switch_13交换机可以以特性应答消息来响应特性请求
d) simple_switch_13是如何实现流规则下发的?
答:
在触发packetIn事件后,解析相关数据结构,获取协议信息、获取源端口、包学习,交换机信息,以太网信息等多种信息。如果以太网类型是LLDP类型,则忽略。 如果不是LLDP类型,则获取目的端口和源端口以及交换机id, 然后进行交换机自学习,先学习源地址对应的交换机的入端口, 再查看是否已经学习目的mac地址,如果没有就进行洪泛转发。如果学习过,查看是否有buffer_id,如果有则在添加流时加上buffer_id,向交换机发送数据包和流表。
e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?
答:
switch_features_handler的优先级更高
编程实现和ODL实验的一样的硬超时功能。

class SimpleSwitch13(app_manager.RyuApp):
OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

def __init__(self, *args, **kwargs):
    super(SimpleSwitch13, self).__init__(*args, **kwargs)
    self.mac_to_port = {}

@set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
def switch_features_handler(self, ev):
    datapath = ev.msg.datapath
    ofproto = datapath.ofproto
    parser = datapath.ofproto_parser

    # install table-miss flow entry
    #
    # We specify NO BUFFER to max_len of the output action due to
    # OVS bug. At this moment, if we specify a lesser number, e.g.,
    # 128, OVS will send Packet-In with invalid buffer_id and
    # truncated packet data. In that case, we cannot output packets
    # correctly.  The bug has been fixed in OVS v2.1.0.
    match = parser.OFPMatch()
    actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                      ofproto.OFPCML_NO_BUFFER)]
    self.add_flow(datapath, 0, match, actions)

def add_flow(self, datapath, priority, match, actions, buffer_id=None, hard_timeout=0):
    ofproto = datapath.ofproto
    parser = datapath.ofproto_parser

    inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                         actions)]
    if buffer_id:
        mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                priority=priority, match=match,
                                instructions=inst, hard_timeout=hard_timeout)
    else:
        mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                match=match, instructions=inst, hard_timeout=hard_timeout)
    datapath.send_msg(mod)

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def _packet_in_handler(self, ev):
    # If you hit this you might want to increase
    # the "miss_send_length" of your switch
    if ev.msg.msg_len < ev.msg.total_len:
        self.logger.debug("packet truncated: only %s of %s bytes",
                          ev.msg.msg_len, ev.msg.total_len)
    msg = ev.msg
    datapath = msg.datapath
    ofproto = datapath.ofproto
    parser = datapath.ofproto_parser
    in_port = msg.match['in_port']

    pkt = packet.Packet(msg.data)
    eth = pkt.get_protocols(ethernet.ethernet)[0]

    if eth.ethertype == ether_types.ETH_TYPE_LLDP:
        # ignore lldp packet
        return
    dst = eth.dst
    src = eth.src

    dpid = format(datapath.id, "d").zfill(16)
    self.mac_to_port.setdefault(dpid, {})

    self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

    # learn a mac address to avoid FLOOD next time.
    self.mac_to_port[dpid][src] = in_port

    if dst in self.mac_to_port[dpid]:
        out_port = self.mac_to_port[dpid][dst]
    else:
        out_port = ofproto.OFPP_FLOOD

    actions = [parser.OFPActionOutput(out_port)]\

    actions_timeout=[]

    # install a flow to avoid packet_in next time
    if out_port != ofproto.OFPP_FLOOD:
        match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
        # verify if we have a valid buffer_id, if yes avoid to send both
        # flow_mod & packet_out
        hard_timeout=10
        if msg.buffer_id != ofproto.OFP_NO_BUFFER:
            self.add_flow(datapath, 2, match,actions_timeout, msg.buffer_id,hard_timeout=10)
            self.add_flow(datapath, 1, match, actions, msg.buffer_id)
            return
        else:
            self.add_flow(datapath, 2, match, actions_timeout, hard_timeout=10)
            self.add_flow(datapath, 1, match, actions)
    data = None
    if msg.buffer_id == ofproto.OFP_NO_BUFFER:
        data = msg.data

    out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                              in_port=in_port, actions=actions, data=data)
    datapath.send_msg(out)

(三)实验报告
个人总结,包括但不限于实验难度、实验过程遇到的困难及解决办法,个人感想,不少于200字。
太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额太难了额

标签:控制器,额太难,datapath,self,ofproto,开源,msg,RYU,port
From: https://www.cnblogs.com/nmb123456/p/16837817.html

相关文章

  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、实验目的1.能够独立部署RYU控制器;2.能够理解RYU控制器实现软件定义的集线器原理;3.能够理解RYU控制器实现软件定义的交换机原理。二、......
  • 实验6:开源控制器实践——RYU
    (一)基本要求1、搭建下图所示SDN拓扑,协议使用OpenFlow1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。2、阅读Ryu文档的TheFirstApplication一节,运行当中的L2Sw......
  • 实验6:开源控制器实践——RYU
    (一)基本要求1.搭建所示SDN拓扑,协议使用OpenFlow1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。构建拓扑sudomn--topo=single,3--mac--controller=remote,ip......
  • 实验6:开源控制器实践——RYU
    一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验环境Ubuntu20.04Desktopamd6......
  • 开源Linux拥抱车载娱乐系统
    AppleCarPlay和AndroidAuto已经开始角力争夺车载娱乐系统市场,而现在开源Linux在也开始在该领域中发力。AutoMotiveGradeLinux(AGL)项目宣布UnifiedCodeBase2.0,致力于......
  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验......
  • 实验6:开源控制器实践——RYU
    基本要求搭建下图所示SDN拓扑,协议使用OpenFlow1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。生成拓扑sudomn--topo=single,3--controller=remote,ip=127.......
  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验......
  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验环......
  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验......