首页 > 其他分享 >顶点着色网格转换为 UV 映射的纹理化网格

顶点着色网格转换为 UV 映射的纹理化网格

时间:2024-10-23 20:47:42浏览次数:1  
标签:映射 UV 网格 texture 纹理 mesh np

https://dylanebert-instanttexture.hf.space/

简介

顶点着色是一种将颜色信息直接应用于网格顶点的简便方法。这种方式常用于生成式 3D 模型的构建,例如 InstantMesh。然而,大多数应用程序更偏好使用 UV 映射的纹理化网格。

本教程将介绍一种快速的解决方案,将顶点着色的网格转换为 UV 映射和纹理化的网格。内容包括 [简短版](# 简短版),以帮助您迅速获取结果,以及 [详细版](# 详细版),提供深入的操作指导。

简短版

安装 InstantTexture 库,以便捷地进行转换。该库实现了下面 详细版 中描述的具体步骤。

pip install git+https://github.com/dylanebert/InstantTexture

用法

以下代码将顶点着色的 .obj 网格转换为 UV 映射的纹理 .glb 网格,并将其保存为 output.glb 文件。

from instant_texture import Converter

input_mesh_path = "https://raw.githubusercontent.com/dylanebert/InstantTexture/refs/heads/main/examples/chair.obj"

converter = Converter()
converter.convert(input_mesh_path)

可视化输出的网格。

import trimesh

mesh = trimesh.load("output.glb")
mesh.show()

就是这样!

如果需要更详细的步骤,可以继续阅读下面的内容。

详细版

首先安装以下依赖项:

  • numpy 用于数值运算
  • trimesh 用于加载和保存网格数据
  • xatlas 用于生成 UV 映射
  • Pillow 用于图像处理
  • opencv-python 用于图像处理
  • httpx 用于下载输入网格
pip install numpy trimesh xatlas opencv-python pillow httpx

导入依赖项。

import cv2
import numpy as np
import trimesh
import xatlas
from PIL import Image, ImageFilter

加载带有顶点颜色的输入网格。该文件应为 .obj 格式,位于 input_mesh_path

如果是本地文件,使用 trimesh.load() 而不是 trimesh.load_remote()

mesh = trimesh.load_remote(input_mesh_path)
mesh.show()

查看网格的顶点颜色。

如果失败,请确保网格是有效的 .obj 文件,并且带有顶点颜色。

vertex_colors = mesh.visual.vertex_colors

使用 xatlas 生成 UV 映射。

这是整个处理过程中的最耗时部分。

vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces)

将顶点和顶点颜色重新映射到 UV 映射。

vertices = mesh.vertices[vmapping]
vertex_colors = vertex_colors[vmapping]

mesh.vertices = vertices
mesh.faces = indices

定义所需的纹理大小。

构造一个纹理缓冲区,通过 upscale_factor 以创建更高质量的纹理。

texture_size = 1024

upscale_factor = 2
buffer_size = texture_size * upscale_factor

texture_buffer = np.zeros((buffer_size, buffer_size, 4), dtype=np.uint8)

使用质心插值填充 UV 映射网格的纹理。

  1. 质心插值: 计算在由顶点 v0v1v2 定义的三角形内的点 p 的插值颜色,分别对应颜色 c0c1c2
  2. 点在三角形内测试: 确定点 p 是否位于由顶点 v0v1v2 定义的三角形内。
  3. 纹理填充循环:
  • 遍历网格的每个面。
  • 检索当前面的 UV 坐标 (uv0 , uv1 , uv2 ) 和颜色 (c0 , c1 , c2 )。
  • 将 UV 坐标转换为缓冲区坐标。
  • 确定纹理缓冲区中三角形的边界框。
  • 对于边界框中的每个像素,检查该像素是否在三角形内,使用点在三角形内测试。
  • 如果在内部,使用重心插值计算插值颜色。
  • 将颜色分配给纹理缓冲区中的相应像素。
# Barycentric interpolation
def barycentric_interpolate(v0, v1, v2, c0, c1, c2, p):
    v0v1 = v1 - v0
    v0v2 = v2 - v0
    v0p = p - v0
    d00 = np.dot(v0v1, v0v1)
    d01 = np.dot(v0v1, v0v2)
    d11 = np.dot(v0v2, v0v2)
    d20 = np.dot(v0p, v0v1)
    d21 = np.dot(v0p, v0v2)
    denom = d00 * d11 - d01 * d01
    if abs(denom) < 1e-8:
        return (c0 + c1 + c2) / 3
    v = (d11 * d20 - d01 * d21) / denom
    w = (d00 * d21 - d01 * d20) / denom
    u = 1.0 - v - w
    u = np.clip(u, 0, 1)
    v = np.clip(v, 0, 1)
    w = np.clip(w, 0, 1)
    interpolate_color = u * c0 + v * c1 + w * c2
    return np.clip(interpolate_color, 0, 255)

# Point-in-Triangle test
def is_point_in_triangle(p, v0, v1, v2):
    def sign(p1, p2, p3):
        return (p1[0] - p3[0])*(p2[1] - p3[1]) - (p2[0] - p3[0])*(p1[1] - p3[1])

    d1 = sign(p, v0, v1)
    d2 = sign(p, v1, v2)
    d3 = sign(p, v2, v0)

    has_neg = (d1 < 0) or (d2 < 0) or (d3 < 0)
    has_pos = (d1 > 0) or (d2 > 0) or (d3 > 0)

    return not (has_neg and has_pos)

# Texture-filling loop
for face in mesh.faces:
    uv0, uv1, uv2 = uvs[face]
    c0, c1, c2 = vertex_colors[face]

    uv0 = (uv0 *(buffer_size - 1)).astype(int)
    uv1 = (uv1 *(buffer_size - 1)).astype(int)
    uv2 = (uv2 *(buffer_size - 1)).astype(int)

    min_x = max(int(np.floor(min(uv0[0], uv1[0], uv2[0]))), 0)
    max_x = min(int(np.ceil(max(uv0[0], uv1[0], uv2[0]))), buffer_size - 1)
    min_y = max(int(np.floor(min(uv0[1], uv1[1], uv2[1]))), 0)
    max_y = min(int(np.ceil(max(uv0[1], uv1[1], uv2[1]))), buffer_size - 1)

    for y in range(min_y, max_y + 1):
        for x in range(min_x, max_x + 1):
            p = np.array([x + 0.5, y + 0.5])
            if is_point_in_triangle(p, uv0, uv1, uv2):
                color = barycentric_interpolate(uv0, uv1, uv2, c0, c1, c2, p)
                texture_buffer[y, x] = np.clip(color, 0, 255).astype(
                    np.uint8
                )

让我们可视化一下目前的纹理效果。

from IPython.display import display

image_texture = Image.fromarray(texture_buffer)
display(image_texture)

Texture with holes

正如我们所看到的,纹理有很多空洞。

为了解决这个问题,我们将结合四种技术:

  1. 图像修复: 使用周围像素的平均颜色填充空洞。
  2. 中值滤波: 通过用周围像素的中值颜色替换每个像素来去除噪声。
  3. 高斯模糊: 平滑纹理以去除任何剩余噪声。
  4. 降采样: 使用 LANCZOS 重采样缩小到 texture_size
# Inpainting
image_bgra = texture_buffer.copy()
mask = (image_bgra[:, :, 3] == 0).astype(np.uint8)* 255
image_bgr = cv2.cvtColor(image_bgra, cv2.COLOR_BGRA2BGR)
inpainted_bgr = cv2.inpaint(
    image_bgr, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA
)
inpainted_bgra = cv2.cvtColor(inpainted_bgr, cv2.COLOR_BGR2BGRA)
texture_buffer = inpainted_bgra[::-1]
image_texture = Image.fromarray(texture_buffer)

# Median filter
image_texture = image_texture.filter(ImageFilter.MedianFilter(size=3))

# Gaussian blur
image_texture = image_texture.filter(ImageFilter.GaussianBlur(radius=1))

# Downsample
image_texture = image_texture.resize((texture_size, texture_size), Image.LANCZOS)

# Display the final texture
display(image_texture)

没有空洞的纹理

正如我们所看到的,纹理现在变得更加平滑,并且没有空洞。

可以通过更高级的技术或手动纹理编辑进一步改进。

最后,我们可以构建一个带有生成的 UV 坐标和纹理的新网格。

material = trimesh.visual.material.PBRMaterial(
    baseColorFactor=[1.0, 1.0, 1.0, 1.0],
    baseColorTexture=image_texture,
    metallicFactor=0.0,
    roughnessFactor=1.0,
)

visuals = trimesh.visual.TextureVisuals(uv=uvs, material=material)
mesh.visual = visuals
mesh.show()

最终网格

就这样!网格已进行 UV 映射并贴上纹理。

在本地运行时,您可以通过调用 mesh.export("output.glb") 来导出它。

局限性

正如您所看到的,网格仍然存在许多小的伪影。

UV 地图和纹理的质量与生产级网格的标准仍有较大差距。

然而,如果您正在寻找一种快速解决方案,将顶点着色网格映射到 UV 映射网格,这种方法可能会对您有所帮助。

结论

本教程介绍了如何将顶点着色网格转换为 UV 映射的纹理网格。

如果您有任何问题或反馈,请随时在 GitHubSpace 上提出问题。

感谢您的阅读!


原文链接: https://hf.co/blog/vertex-colored-to-textured-mesh
原文作者: Dylan Ebert

译者: cheninwang

标签:映射,UV,网格,texture,纹理,mesh,np
From: https://www.cnblogs.com/huggingface/p/18498324

相关文章

  • 纹理映射
    https://github.com/zach0zhang/OpenGL_Learning/blob/master/Texture/OpenGL学习之路14----纹理映射(TextureMapping)1.纹理实际上是一个二维数组,它的元素是一些颜色值。2.单个的颜色值被称为纹理元素(textureelements)或纹理像素(texel)。3.每一个纹理像素在纹理中都有一个唯一......
  • Boruvka求最小生成树(菠萝算法)
    更新日志前言据说Boruvka算法是最古早的最短路算法,多半是真的。为什么叫菠萝算法?不知道。多半是音译吧。思路这个算法需要执行多轮,直到生成最小生成树。在每一轮中,对于每一个点(或者说,连通块),都找出以它为一个端点(或者说,一个端点在这个连通块中)的最短的边,并且将这条边加入......
  • EasyExcel读取文件数据不能映射到实体的一种情况(对于链式调用实体的数据映射支持)
    除去在网上能搜到的由于表头配置不对、单元格格式影响、文件编码以及依赖版本之类的问题以外,还存在一个可能导致这个问题的原因,也是我现在遇到的,记录一下。先说结论,EasyExcel不支持映射数据到使用了链式调用的实体类上。我的情况是在接收Excel数据的实体类上添加了Lombok注解:@A......
  • 使用mmap()创建内存映射
    系统调用(mmap和munmap)mmap内存映射类型mmap()系统调用用于在调用进程的虚拟地址空间中创建内存映射,主要分为两种类型:文件映射:将文件的一部分直接映射到虚拟内存中,允许通过内存访问文件内容,映射的分页会在需要时自动加载匿名映射:没有对应文件,分页初始化为0,可以视为一......
  • UVA11294 Wedding 题解
    洛谷题目传送门前排提示:本题需要用到知识点2-SAT以及强联通分量,模板传送门P4782【模板】2-SAT。题目大意:有至多\(30\)对夫妻将会参加一个婚宴。他们将会坐在一个长桌子的两边。新郎新娘坐在彼此相对的一端并且新娘带着一个头饰使得她看不到和她坐在同一边的人。夫妻坐在......
  • uv 基于rust 编写的python 包管理以及项目管理工具
    uv基于rust编写的python包管理以及项目管理工具包含的特性简单工具可以替换pip,pip-tools,pipx,poetry,pyenv等比pip快10-100倍安装以及管理python版本运行以及安装python应用运行脚本支持类似cargo模式的workspace磁盘空间高效说明对于希望提示快速python包下......
  • 浏览器访问本地资源 - 只能用于测试(把file:///映射为http://)
             ......
  • 利用iptables实现端口映射(支持动态域名)
    将下列代码保存到/bin/ddns_portmap.sh#!/bin/bash#检查参数if["$#"-ne2];thenecho"Usage:$0<domain><local_port1:remote_port1,local_port2:remote_port2,...>"exit1fi#从参数获取动态域名和端口映射domain=$1port_mappings=$2#获取......
  • UVA1240 ICPC Team Strategy 做题记录
    看到\(n\le12\),考虑搜索。但是过不去,于是加上记忆化搜索即可。因为\(n\)不大,选了什么题可以状压进一个数里面。注意如果你在搜索的时候不判是否满足时间,那么你在dfs函数开头判断超时应该返回\(-1\)及以下。剩下的按照题意模拟即可。点击查看代码intn,a[4][maxn];i......
  • DevExpress WinForms中文教程:Data Grid - 如何为网格绑定ADO. NET数据
    在本教程中,您将学习如何做到以下几点:在一个WinForms项目中创建并配置ADO.NET数据源将DevExpressWinForms数据网格绑定到数据源。将更改发布到数据库。P.S:DevExpressWinForms拥有180+组件和UI库,能为WindowsForms平台创建具有影响力的业务解决方案。DevExpressWinForms能......