首页 > 其他分享 >圆方树

圆方树

时间:2024-10-11 15:22:40浏览次数:5  
标签:交叉路口 路径 方点 圆方树 双向 赛程

点双联通分量:

对一张图,若其不含割点,则其为一个点双。
1,对于点双中的两个点(除只有两点一边的特殊图),可以视作其必然存在两条不同的简单路径,使两者经过的并集为空。
2,对于点双中任意一对点,经过它们的简单路径的并集一定为点双本身,意即可以认为两点间简单路径可以通过点双内任意一点。

圆方树:

圆方树:对于一张无向图,将其点双求出,而后将点双视作方点,将原图点视作圆点,将一点双内所含的点代表圆点与该方点相连,一来就会形成一颗树(原图联通)。
那么就会有良好的性质,如可以直接发现的是,两点间路径可以经过的点可以用圆方树上所有方点包含,也就是若有与点相关信息可以使用方点记录,而后利用树来快速求出路径经过问题。

P4630 [APIO2018] 铁人两项

题目描述

比特镇的路网由 \(m\) 条双向道路连接的 \(n\) 个交叉路口组成。

最近,比特镇获得了一场铁人两项锦标赛的主办权。这场比赛共有两段赛程:选手先完成一段长跑赛程,然后骑自行车完成第二段赛程。

比赛的路线要按照如下方法规划:

  1. 先选择三个两两互不相同的路口 \(s\)、\(c\) 和 \(f\),分别作为比赛的起点、切换点(运动员在长跑到达这个点后,骑自行车前往终点)、终点。
  2. 选择一条从 \(s\) 出发,经过 \(c\) 最终到达 \(f\) 的路径。考虑到安全因素,选择的路径经过同一个点至多一次。

在规划路径之前,镇长想请你帮忙计算,总共有多少种不同的选取 \(s\)、\(c\) 和 \(f\) 的方案,使得在第 \(2\) 步中至少能设计出一条满足要求的路径。

输入格式

第一行包含两个整数 \(n\) 和 \(m\),分别表示交叉路口和双向道路的数量。

接下来 \(m\) 行,每行两个整数 \(v_i, u_i\)。表示存在一条双向道路连接交叉路口 \(v_i, u_i\)(\(1 \le v_i, u_i \le n\),\(v_i \neq u_i\))。

保证任意两个交叉路口之间,至多被一条双向道路直接连接。

输出格式

输出一行,包括一个整数,表示能满足要求的不同的选取 \(s\)、\(c\) 和 \(f\) 的方案数。

  • Subtask 9(points: \(10\)):\(n \leq 100000\),\(m \leq 200000\)。

标签:交叉路口,路径,方点,圆方树,双向,赛程
From: https://www.cnblogs.com/1n87/p/18458457

相关文章

  • 圆方树
    定义割点:无向图中,若删除点及其连边,连通块变多,那么被删除的点为割点点双连通:若无向图中点对\(x,y\),删除任意非\(x\)和非\(y\)节点后,\(x\)和\(y\)任然连通,陈\(x,y\)点双连通点双连通子图:无向图中的一个子图\(G\),\(G\)中任意2点都是联通的,那么称\(G\)为原图的点双......
  • 圆方树学习笔记 & 最短路 题解
    前言圆方树学习笔记,从一道例题讲起。题目链接:Hydro&bzoj。题意简述仙人掌上求两点距离。题目分析为了把仙人掌的性质发挥出来,考虑将其变成一棵树。圆方树就是这样转换的工具。先讲讲圆方树的概念:原图上的点为圆点,每个点双对应一个方点,树边都是方点连向点双内的圆点。具......
  • 圆方树
    定义圆方树:将无向图转化为树形结构的数据结构,使得树上2点路径上的点都是原图的必经点。圆点:原无向图\(G\)中的点,仍然保留在圆方树中,称之为圆点。方点:将每一个点双连通分量新建一个“方点”。树边:每一个方点都向对应的点双内的圆点连边。基本性质:性质一:圆方树的总点数=......
  • 圆方树
    一些概念割点:无向图中,若删除点x及其连边,连通块变多,那么x为割点。点双连通:若点对x和y,删除任意非x和非y节点后,x和y仍然联通,称x和y点双连通。点双联通子图:无向图中的一个子图G,G中任意两点都是点双连通的,那么G为原图的一个点双连通子图。点双联通分量:无向图中的极大点双联通子图......
  • 【算法学习】圆方树——处理仙人掌的利器
    圆方树大概分两种,一个是圆方树,一个是广义圆方树。圆方树这可以解决仙人掌上的问题。任意一条边至多只出现在一条简单回路的无向连通图称为仙人掌。很多题解将其作为无向图构建,本文将其构建为外向树,在这个问题中两种构建方式不会影响求解。构建方式记读入的图为原图,构建的......
  • 圆方树
    圆方树这里的圆方树指广义圆方树。对于一张\(n\)个点的无向图,其中包含\(k\)个点双,那么这张图建出的圆方树一共有\(n+k\)个点,其中前\(n\)个点为原图中的点,称为圆点,后\(k\)个点每个点代表一个点双,称为方点,每个点双与其中包含的点连边构成一个菊花,这\(k\)个菊花经由图......
  • 圆方树学习笔记
    圆方树学习笔记圆方树是优秀的图论算法,从仙人掌图向无向图扩展,利用割点和点双联通分量的性质,实现了图向树的转换。对仙人掌的处理:圆方树——处理仙人掌的利器而且实现十分简单算法思路前置知识割点和桥,点双联通分量。思路对于一个无向图,圆方树理解可以如下:原图中点是圆......
  • 圆方树学习笔记
    今天在做ABC318G这道题,要用到圆方树的知识,于是就去学了圆方树。学习圆方树首先需要学习点双连通分量以及缩点,此处不多赘述。圆方树中分两种类型的点:圆点和方点。圆点指的是原来的无向图中的所有点,而方点指的是每一个点双连通分量所代表的点。相当于每一个点双连通分量就是一个......
  • 圆方树 useful things
    圆方树,是解决仙人掌问题的实用方法,假设最初图都是圆点,对于每个环新建一个方点并连接这个环上所有圆点,能很好规避同一个点可能属于很多个环的情况,并且发现build完之后是一棵树广义圆方树,能够不局限于去解决仙人掌问题,能上升到无向图层面,很好解决图上路径类,等等问题那么如何建立圆......
  • 圆方树 useful things
    圆方树,是解决仙人掌问题的实用方法,假设最初图都是圆点,对于每个环新建一个方点并连接这个环上所有圆点,能很好规避同一个点可能属于很多个环的情况,并且发现build完之后是一棵树广义圆方树,能够不局限于去解决仙人掌问题,能上升到无向图层面,很好解决图上路径类,等等问题那么如何建立圆......