CS 417/517: Introduction to Human Computer Interaction
Project 1 ( Fall 2024 )
1 Introduction
In this assignment, your task is to implement a Convolutional Neural Network (CNN) and evaluatets performance in classifying handwritten digits. After completing this assignment, you are able tounderstand:
- How Neural Network works? How to implement Neural Network?
- How to setup a Machine Learning experiment on public data?
- How regularization, dropout plays a role in machine learning implementation?
- How to fine-tune a well-train model?
To get started with the exercise, you will need to download the supporting files and unzip itscontents to the directory you want to complete this assignment.
2 Dataset
The MNIST dataset consists of a training set of 60000 examples and a test set of 10000 examples.All digits have been size-normalized and centered in a fixed image of 28 × 28 size. In the originaldataset, each pixel in the image is represented by an integer between 0 and 255, where 0 is black,255 is white and anything between represents a different shade of gray. In many research papers, theofficial training set of 60000 examples is divided into an actual training set of 50000 examples and avalidation set of 10000 examples.
3 Implementation
( Notice : You can use any library to finish this project. We recommend students to use GoogleColab, which is a cloud-based service that allows you to run Jupyter Notebooks for free. To start1this, follow these steps. 1. Open your web browser and go to the Google Colab website by visiting
colab.research.google.com. 2. Sign up and Sign in. 3. After signing in, you can start a new notebookby clicking on File - New notebook. )
3.1 Tasks
Code Task [70 Points]: Implement Convolution Neural networks (CNN) to train and test the
MNIST or FER-2013 dataset, and save the well-train model.
Code Task (1) Build your customized Convolution Neural Network (CNN)
- Define the architecture of a Convolution 代 写CS 417/517: Introduction to Human Computer Interaction Neural Network (CNN) with more than 3 layers, thattakes these images as input and gives as output what the handwritten digits represent for thisimage.
- Test your machine learning model on the testing set: After finishing the architecture of CNNmodels, fix your hyper-parameters(learning rate, lambda for penalty, number of layers, andnumber of neurons per layer), and test your model’s performance on the testing set.
- Implement different optimizer (i.e., at least two). Compare the results in report and analyze thepotential reasons.
- Implement different regularization methods for the Neural Networks, such as Dropout, l1 or l2.
Compare the results in report and analyze the potential reasons.
Code Task (2) Fine-tune at least three different well-pretrained models (e.g., MobileNetV3,Resnet50 ) to get a good performance. You need to choose the specific layers to retrained and write
it in the report.
Code Task (3): This code task is only for CS517. Recognize handwritten digits from a
recorded video using the pre-trained model and OpenCV libraries.
Notice: The students in CS417 will get 20 points bonus if they finish this part.
Load the video and read frames.Load the pre-trained model.
While the input is available, read the next frame.Process the frame. (options: resizing, cropping, blurring, converting to
grayscale, binarizing, normalizing and etc.)Input the processed frame into the model.
Use a threshold to detect digits.Put a contour around the digit and label the predicted value and probability.Display the frame.Release resources.Hint: Here lists some of the functions you might use.
cv2.VideoCapture
cv2.resize
cv2.cvtColor
2cv2.threshold
cv2.putText
cv2.rectangle
cv2.imshow
cv2.waitKey
cv2.destroyAllWindows
Writing Report Task [30 Points]: Write a report to describe above implementation details andcorresponding results.
4 Deliverables
There are two deliverables: report and code.
- Report (30 points) The report should be delivered as a separate pdf file, and it is recommendedfor you to use the NIPS template to structure your report. You may include comments in theJupyter Notebook, however you will need to duplicate the results in thereport. The reportshould describe your results, experimental setup, details and comparison between the resultsobtained from different setting of the algorithm and dataset.
- Code (70 points)
The code for your implementation should be in Python only. The name of the Main file shouldbe main.ipynb. Please provide necessary comments in the code and show some essential stepsor your group work.3
标签:Interaction,set,Neural,Introduction,cv2,Computer,report,model,your From: https://www.cnblogs.com/comp9021/p/18439429