首页 > 其他分享 >CS 417/517: Introduction to Human Computer Interaction

CS 417/517: Introduction to Human Computer Interaction

时间:2024-09-29 12:23:25浏览次数:11  
标签:Interaction set Neural Introduction cv2 Computer report model your

CS 417/517: Introduction to Human Computer Interaction 

Project 1 ( Fall 2024 )

1 Introduction

In this assignment, your task is to implement a Convolutional Neural Network (CNN) and evaluatets performance in classifying handwritten digits. After completing this assignment, you are able tounderstand:

  • How Neural Network works? How to implement Neural Network?
  • How to setup a Machine Learning experiment on public data?
  • How regularization, dropout plays a role in machine learning implementation?
  • How to fine-tune a well-train model?

To get started with the exercise, you will need to download the supporting files and unzip itscontents to the directory you want to complete this assignment.

2 Dataset

The MNIST dataset consists of a training set of 60000 examples and a test set of 10000 examples.All digits have been size-normalized and centered in a fixed image of 28 × 28 size. In the originaldataset, each pixel in the image is represented by an integer between 0 and 255, where 0 is black,255 is white and anything between represents a different shade of gray. In many research papers, theofficial training set of 60000 examples is divided into an actual training set of 50000 examples and avalidation set of 10000 examples.

3 Implementation

( Notice : You can use any library to finish this project. We recommend students to use GoogleColab, which is a cloud-based service that allows you to run Jupyter Notebooks for free. To start1this, follow these steps. 1. Open your web browser and go to the Google Colab website by visiting

colab.research.google.com. 2. Sign up and Sign in. 3. After signing in, you can start a new notebookby clicking on File - New notebook. )

3.1 Tasks

Code Task [70 Points]: Implement Convolution Neural networks (CNN) to train and test the

MNIST or FER-2013 dataset, and save the well-train model.

Code Task (1) Build your customized Convolution Neural Network (CNN)

  • Define the architecture of a Convolution 代 写CS 417/517: Introduction to Human Computer Interaction  Neural Network (CNN) with more than 3 layers, thattakes these images as input and gives as output what the handwritten digits represent for thisimage.
  • Test your machine learning model on the testing set: After finishing the architecture of CNNmodels, fix your hyper-parameters(learning rate, lambda for penalty, number of layers, andnumber of neurons per layer), and test your model’s performance on the testing set.
  • Implement different optimizer (i.e., at least two). Compare the results in report and analyze thepotential reasons.
  • Implement different regularization methods for the Neural Networks, such as Dropout, l1 or l2.

Compare the results in report and analyze the potential reasons.

Code Task (2) Fine-tune at least three different well-pretrained models (e.g., MobileNetV3,Resnet50 ) to get a good performance. You need to choose the specific layers to retrained and write

it in the report.

Code Task (3): This code task is only for CS517. Recognize handwritten digits from a

recorded video using the pre-trained model and OpenCV libraries.

Notice: The students in CS417 will get 20 points bonus if they finish this part.

Load the video and read frames.Load the pre-trained model.

While the input is available, read the next frame.Process the frame. (options: resizing, cropping, blurring, converting to

grayscale, binarizing, normalizing and etc.)Input the processed frame into the model.

Use a threshold to detect digits.Put a contour around the digit and label the predicted value and probability.Display the frame.Release resources.Hint: Here lists some of the functions you might use.

cv2.VideoCapture

cv2.resize

cv2.cvtColor

2cv2.threshold

cv2.putText

cv2.rectangle

cv2.imshow

cv2.waitKey

cv2.destroyAllWindows

Writing Report Task [30 Points]: Write a report to describe above implementation details andcorresponding results.

4 Deliverables

There are two deliverables: report and code.

  1. Report (30 points) The report should be delivered as a separate pdf file, and it is recommendedfor you to use the NIPS template to structure your report. You may include comments in theJupyter Notebook, however you will need to duplicate the results in thereport. The reportshould describe your results, experimental setup, details and comparison between the resultsobtained from different setting of the algorithm and dataset.
  1. Code (70 points)

The code for your implementation should be in Python only. The name of the Main file shouldbe main.ipynb. Please provide necessary comments in the code and show some essential stepsor your group work.3

标签:Interaction,set,Neural,Introduction,cv2,Computer,report,model,your
From: https://www.cnblogs.com/comp9021/p/18439429

相关文章

  • COMP90049, Introduction to Machine Learning
    SchoolofComputingandInformationSystemsTheUniversityofMelbourneCOMP90049,IntroductiontoMachineLearning,Semester22024Assignment2:PredictingSupremeCourtRulingsReleased:Friday,September6th2024.Due:StageI:Friday,October4th5pm......
  • CEG2136: Computer Architecture I
    CEG2136:ComputerArchitectureILAB4           BASICCOMPUTERORGANIZATION1. ObjectivesIn this laboratory, students will analyse the structure of a basic computer, will devise, design, implement,simulateinQuartusa......
  • ECON 3720: Introduction to Econometrics
    ECON3720:IntroductiontoEconometricsProblemSet03FallSemester2024Due:September27th2024Pleasesubmittheproblemsetnolaterthan5PMonSeptember27th2024.SubmittheproblemsettoyourTA’smailboxintheMonroeHallbasement.Failureto......
  • COMP3331/9331 Computer Networks and Applications
    COMP3331/9331ComputerNetworksandApplicationsAssignmentforTerm3,2024BitTrickleFileSharing System1. Goal and Learning ObjectivesIn this assignment you will have the opportunity to implement BitTrickle, apermissioned,peer-to- pee......
  • Introduction to the YouTube to WAV Conversion Website
    Title:IntroductiontotheYouTubetoWAVConversionWebsite-www.youtubetowav.topIntoday'sdigitalage,whereweconsumeavastamountofmultimediacontent,havingtheabilitytoconvertvideosintodifferentformatscanbeextremelyuseful.One......
  • CEG 4136 Computer Architecture
    CEG4136ComputerArchitectureIIIFall2024TobesubmittedSeptember28,11:59p.m.Lab1:OptimizingForestFireSimulationwithCUDAIntroductionInthislab,youwillworkonaforestfiresimulationcodethatusesa1000×1000grid.Thefirestar......
  • 【论文阅读笔记】【Hand Pose Estimation-Interacting Hand】 MeMaHand: Exploiting M
    CVPR2023读论文思考的问题论文试图解决什么问题?写作背景是什么?问题:如何在双手识别中集成paramatic(MANO)和non-paramatichand(GCN)representation方法的优点?背景:基于手部模型MANO的方法能够产生合理且稳定的手型,但手部的网格不够细粒度和灵活基于GCN......
  • CVPR(Conference On Computer Vision and Pattern Recognition)近十年研究热点追踪
    CVPR(ConferenceOnComputerVisionandPatternRecognition)近十年研究热点追踪CVPR近十年(2015~2024)研究热点追踪......
  • COMP90086 Computer Vision
    COMP90086Computer Vision,2024Semester 2Assignment3: ComputingdisparitybetweenstereoimagesIntroductionFindingthedisparitiesbetweentwoimagesisthemainstepinestimatingthethreedimensionalstruc- ture of a scene.This assignmentuse......
  • FIT1047 Introduction to computer systems
    FIT1047 Introductiontocomputersystems, networksand security–S22024Assignment3– NetworksPurposeStudentswill recorddatafromareal-worldwireless networkanddemonstrate that theycananalyse it, identify its propertiesand p......