题意
思路
设 \(sum_i = \sum\limits_{j = 1}^i w_j\)。
可以得到转移方程 \(f_i = f_j + (h_i - h_j) ^ 2 + sum_i - sum_j\)。
转化为 \(y = kx + b\) 的形式:
\(f_i = f_j + (h_i - h_j) ^ 2 + sum_i - sum_j = f_j + h_i^2 + h_j^2 - 2 h_ih_j + sum_i - sum_j = (-2h_ih_j) + (f_j + h_j ^ 2 - sum_j) + (h_i ^ 2 + sum_i)\)。
转化完成,\(k = -2h_i, b = f_j + h_j ^ 2 - sum_j\)。
然后我们边转移,边把这条线段放入即可。
代码
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1000010;
int n, h[N], w[N], f[N];
struct node {
int id;
} tr[N << 2];
double gety(double k, int x, double b) {
return k * x + b;
}
double k[N], b[N];
bool compare(int v1, int v2, int x) {
double y1 = gety(k[v1], x, b[v1]);
double y2 = gety(k[v2], x, b[v2]);
return y1 < y2;
}
void update(int u, int l, int r, int pl, int pr, int x) {
int mid = l + r >> 1;
if (pl <= l && r <= pr) {
if (!tr[u].id) {
tr[u].id = x;
return;
}
if (compare(x, tr[u].id, mid)) swap(tr[u].id, x);
if (compare(x, tr[u].id, l)) update(u << 1, l, mid, pl, pr, x);
if (compare(x, tr[u].id, r)) update(u << 1 | 1, mid + 1, r, pl, pr, x);
return;
}
if (pl <= mid) update(u << 1, l, mid, pl, pr, x);
if (pr > mid) update(u << 1 | 1, mid + 1, r, pl, pr, x);
}
double query(int u, int l, int r, int x) {
if (l == r) return gety(k[tr[u].id], x, b[tr[u].id]);
int mid = l + r >> 1;
double ans = gety(k[tr[u].id], x, b[tr[u].id]), ans2 = 0;
if (x <= mid) ans2 = query(u << 1, l, mid, x);
else ans2 = query(u << 1 | 1, mid + 1, r, x);
return min(ans, ans2);
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n;
for (int i = 1; i <= n; i++ )cin >> h[i];
for (int i = 1; i <= n; i++) cin >> w[i], w[i] += w[i - 1];
b[0] = 1e18;
k[1] = -2 * h[1], b[1] = h[1] * h[1] - w[1];
update(1, 1, 1000000, 1, 1000000, 1);
for (int i = 2; i <= n; i++) {
f[i] = h[i] * h[i] + w[i - 1] + query(1, 1, 1000000, h[i]);
k[i] = -2 * h[i], b[i] = f[i] + h[i] * h[i] - w[i];
update(1, 1, 1000000, 1, 1000000, i);
}
cout << f[n] << '\n';
return 0;
}
标签:Building,P4655,Bridges,int,sum,tr,CEOI2017,ih,id
From: https://www.cnblogs.com/Yuan-Jiawei/p/18383933