水水水~
题目链接戳我
分析
首先根据题目条件可得式子=>\((x - 2)(y - 2) = n(2x + 2y - 4)\)
化简式子可得
可以发现对于\(\frac{4n^2 + 4n}{y - (2n + 2)}\)这个式子想让其条件\((y - 2n - 2)|(4n^2 + 4n)\)成立,只能是\(y-(2n + 2)\)为\(4n^2 + 4n\)的因子,因此我们只需求出\(4n^2 + 4n\)的所有因子即可得到所有的(x, y)对。
具体实现
#include <bits/stdc++.h>
#ifdef LOCAL
#include "algo/debug.h"
#else
#define debug(...) 42
#endif
std::mt19937 rng(std::chrono::steady_clock::now().time_since_epoch().count());
namespace Factorizer {
std::vector<int> primes;
std::vector<int> least;
void sieve(int n) {
std::vector<int> nums;
least.assign(n + 1, 0);
for (int i = 2; i <= n; ++i) {
if (least[i] == 0) {
least[i] = i;
nums.push_back(i);
}
int now = 0;
while (now < (int)nums.size()
&& nums[now] <= least[i] && i * nums[now] <= n) {
least[i * nums[now]] = nums[now];
now += 1;
}
}
primes = nums;
}
constexpr bool miller_rabin(long long n) {
if (n <= 1 || (n != 2 && n % 2 == 0)) return false;
for (auto a : {3, 5, 7, 11, 13, 17, 19, 23, 29}) {
if (n % a == 0) return n == a;
}
if (n < 31 * 31) return true;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[] = {
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37
};
for (long long a : bases) {
if (n == a) return true;
long long t = d;
long long y = 1 % n;
for (long long _t = t; _t != 0; _t >>= 1) {
if (_t & 1) y = (__int128) y * a % n;
a = (__int128) a * a % n;
}
while (t != n - 1 && y != 1 && y != n - 1) {
y = (__int128) y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) return false;
}
return true;
}
long long pollard_rho(long long n) {
if (n == 1 || miller_rabin(n)) return n;
long long now = 0;
do {
long long t = std::gcd(++now, n), r = t;
if (t != 1 && t != n) return t;
long long g = 1;
do {
t = ((__int128) t * t % n + now) % n;
r = ((__int128) r * r % n + now) % n;
r = ((__int128) r * r % n + now) % n;
} while ((g = std::gcd(abs(t - r), n)) == 1);
if (g != n) return g;
} while (now < n / now);
return 0;
}
std::vector<long long> factor(long long n) {
if (n == 1) return {};
std::vector<long long> g, d;
d.push_back(n);
while (!d.empty()) {
auto v = d.back();
d.pop_back();
auto rho = pollard_rho(v);
if (rho == v) {
g.push_back(rho);
} else {
d.push_back(rho);
d.push_back(v / rho);
}
}
std::sort(g.begin(), g.end());
return g;
}
}
int main() {
std::cin.tie(nullptr)->sync_with_stdio(false);
#define int long long
int n;
std::cin >> n;
std::vector<int> primes = Factorizer::factor(4LL * n * n + 4LL * n);
std::vector<std::pair<int, int>> fact;
for (int i = 0; i < (int)size(primes); ++i) {
int j = i + 1;
while (j < (int)size(primes) && primes[i] == primes[j]) {
j += 1;
}
fact.emplace_back(primes[i], j - i);
i = j - 1;
}
std::vector<std::pair<int, int>> ans;
auto power = [&](int a, int b) {
int c = 1;
for (; b; a *= a, b >>= 1)
if (b & 1) c *= a;
return c;
};
int num = 0;
auto dfs = [&](auto &&self, int u, int f) {
int y = f + (2 * n + 2), x = 2 * (n + 1) + 4 * n * (n + 1) / (y - 2 * n - 2);
if (x > y) {
std::swap(x, y);
}
ans.emplace_back(x, y);
if (u == size(fact)) return ;
auto [p, cnt] = fact[u];
// debug(p, cnt);
for (int i = 0; i <= cnt; ++i) {
debug(u + 1, f * power(p, i));
self(self, u + 1, f * power(p, i));
}
};
dfs(dfs, 0, 1);
std::sort(ans.begin(), ans.end());
ans.erase(std::unique(ans.begin(), ans.end()), ans.end());
std::cout << size(ans) << '\n';
for (auto [x, y] : ans) {
std::cout << x << ' ' << y << '\n';
}
}
标签:std,int,题解,back,4n,2n,Rectangles,primes,Gym102788
From: https://www.cnblogs.com/sleeeeeping/p/18346919