首页 > 其他分享 >Nature 对阿尔茨海默病进行单细胞转录组分析|详细解读

Nature 对阿尔茨海默病进行单细胞转录组分析|详细解读

时间:2024-08-01 15:29:16浏览次数:15  
标签:AD Nature 胶质 基因 细胞 转录 单细胞 阿尔茨海默

图片

Alzheimer’s disease is a pervasive neurodegenerative disorder, the molecular complexity of which remains poorly understood. Here, we analysed 80,660 single-nucleus transcriptomes from the prefrontal cortex of 48 individuals with varying degrees of Alzheimer’s disease pathology. Across six major brain cell types, we identified transcriptionally distinct subpopulations, including those associated with pathology and characterized by regulators of myelination, inflammation, and neuron survival. The strongest disease-associated changes appeared early in pathological progression and were highly cell-type specific, whereas genes upregulated at late stages were common across cell types and primarily involved in the global stress response. Notably, we found that female cells were overrepresented in disease-associated subpopulations, and that transcriptional responses were substantially different between sexes in several cell types, including oligodendrocytes. Overall, myelination-related processes were recurrently perturbed in multiple cell types, suggesting that myelination has a key role in Alzheimer’s disease pathophysiology. Our single-cell transcriptomic resource provides a blueprint for interrogating the molecular and cellular basis of Alzheimer’s disease.

文章解读:Tiger

文章审校:生信宝典

研究背景

阿尔茨海默病(AD)是一种缓慢发展的神经退行性疾病,从轻度记忆丧失开始,最终导致严重的执行和认知功能受损。 AD的病理生理学涉及神经元和神经胶质之间的相互作用; 为了支持这一点,转录组学和表观基因组学分析揭示了AD脑中神经元功能的下调先天免疫反应的上调。 然而,组织混合水平的分辨率可能掩盖细胞间和细胞群内改变的复杂性,特别是对于不太丰富的细胞类型。

为了表征AD脑病理学中复杂的细胞变化,作者分析了80,660个基于droplet的单核皮质转录组,这些个体具有不同程度的AD病理学状态,并且同时包含男性和女性患者。

这应该是第一个单细胞水平上把AD的病理性信息与转录改变信息关联起来的数据资源,并且结合了细胞类型特异的和共有的基因表达变化模式,疾病相关的细胞亚群和性别特异的转录响应方式。

研究方案

Sample: 前额皮质的组织,大脑样本来自48名参与者,其中24名具有高水平β-淀粉样蛋白和其他AD的病理学标志。

单细胞建库流程: 单核转录组,见下图

图片

测序数据分析介绍

  1. 通过使用CellRanger软件(v.2.0.0)(10x Genomics)把测序数据比对到人基因组GRCh38.p5(NCBI GCA_000001405.20 ),对48个不同阿尔茨海默症进展期的患者的prefrontal cortex区域的总计8万多单细胞进行了单核转录组测序;

  2. 通过cell denstity plot 确定UMI value为200时可以作为细胞过滤的cutoff值(该参数需要适当调整,保障合适的细胞过滤百分比)(具体见:10X单细胞测序分析软件:Cell ranger,从拆库到定量Hemberg-lab单细胞转录组数据分析(四)- 文库拆分和细胞鉴定);

  3. 使用两篇参考文献的通用marker作为细胞类型鉴定依据,另外两篇用作小胶质细胞分型;(Marker很重要,你会发现同一类细胞很多作者使用不同marker定义的);单细胞分群后,怎么找到Marker基因定义每一类群?

  4. QC;共获得80,660个细胞,细胞平均测序量为1,496个reads (真心少);通过检测到的基因数量,测序reads量,top50表达量基因的占比,线粒体基因的reads数量进行质控 (Hemberg-lab单细胞转录组数据分析(九)- Scater包单细胞过滤Hemberg-lab单细胞转录组数据分析(十)- Scater基因评估和过滤);

  5. PCA+Clustering: top 50 PCs + *SCANPY*包 (Python)

结果分析

图片

(1)细胞分型;采用SCANPY把单细胞聚类后,作者通过marker定义如下细胞:兴奋性神经元(由NRGN标记),抑制性神经元(GAD1),星形胶质细胞(AQP4),少突胶质细胞(MBP),小胶质细胞(CSF1R和CD74),少突胶质细胞祖细胞(VCAN),内皮细胞(FLT1)和周细胞(AMBP);其中与正常人相比,表达变化较大的有兴奋性(Ex)和抑制性(In)神经元,星形胶质细胞(Ast),少突胶质细胞(Oli),少突胶质细胞前体细胞(Opc)和小胶质细胞(Mic);结果表明AD病理学在转录水平上影响所有主要细胞类型,并且单细胞水平分辨率至关重要。

图片

(2)AD进展期间细胞类型特异性的变化;作者对早期与晚期AD病理学中的表达不同进行分析,早期病理学和非病理学组的比较显示,在个体发展出严重的病理特征之前发生了大规模的转录变化。上调和下调的DEG都是高度细胞类型特异性的,几乎所有基因(96%)都在神经元(兴奋性和抑制性)或单个神经胶质细胞类型中受到干扰,表明主要的转录变化出现在病理进展的早期。晚期病理组和早期病理组的比较揭示了在细胞类型中具有共同上调基因,与我们在病理学早期观察到的细胞类型特异性相反。

图片

图片

(3)细胞类型特异性与AD相关性状的关联;鉴于AD表型的复杂性和异质性,我们接下来旨在量化基因表达关联特定细胞类型和病理特征的可变性。作者使用自组织图(SOM)分析所得的基因 - 性状相关模式,以发现具有与每种表型最强相关的相似表达模式的基因集。具有相似表型相关性的基因被分组在相同的SOM网格单元中,附近聚类有相似的单元。作者观察到兴奋性神经元,抑制性神经元,星形胶质细胞,小胶质细胞和少突胶质细胞各自显示出与多种病理特征相关的不同SOM单位,这表明不同组的基因在每种细胞类型中响应AD病理进程是不同的。SOM基因表达聚类分析初探

图片

(4)对AD病理学的性别特异性差异反应;与AD病理相关的细胞亚群(Ex4,Ast1,Oli0和Mic1)富含雌性细胞,而非病理亚群富集(Ex6,Ast0和Oli1)富含雄性细胞。这些差异可能源于对AD病理学的性别特异性转录反应。

临床意义

作者通过单细胞分析突出了响应AD病理的神经胶质 - 神经元相互作用的复杂性,对人们更为清楚的了解阿尔茨海默症及对其治疗具有重要意义。

参考文献:Mathys H, Davila-Velderrain J, et al Single-cell transcriptomic analysis of Alzheimer’s disease.Nature. 2019 May 1. doi: 10.1038

标签:AD,Nature,胶质,基因,细胞,转录,单细胞,阿尔茨海默
From: https://blog.csdn.net/qazplm12_3/article/details/140823670

相关文章

  • 单细胞转录组上游fasta文件处理
    单细胞分析上游fasta文件处理——基于cellranger与dropseqRunner ###如果测序文件由10Xgenomics平台产生,则采用cellrangercount的基本流程进行fasta文件的上游处理;如果测序文件由dropseq平台产生,则采用dropseqRunner软件进行处理一、cellranger配置1、软件安装并查看帮助......
  • 第一作者解读|我们这篇Nature Communication背后的故事
    2024年7月16日,大暑将至,立秋不远。我们基于Python的转录组学全分析框架的文章——"OmicVerse:aframeworkforbridginganddeepeninginsightsacrossbulkandsingle-cellsequencing"——正式在NatureCommunication上发表了,这是我们课题组第一个里程碑意义的成果,也是我第一......
  • JavaScript - jSignature移动端手写签名
    <html><head><scriptsrc="https://cdn.bootcdn.net/ajax/libs/jquery/3.7.1/jquery.min.js"></script><scriptsrc="https://cdn.bootcdn.net/ajax/libs/jSignature/2.1.3/jSignature.min.js"></script>......
  • 利用FastAPI和OpenAI-Whisper打造高效的语音转录服务
    最近好久没有写博客了,浅浅记录下如何将OpenAI-Whisper做成Web服务吧......
  • vue3 smooth-signature 带笔锋手写签名
    mini-smooth-signature 小程序版带笔锋手写签名,支持多平台小程序使用参考:GitHub-linjc/smooth-signature:H5带笔锋手写签名,支持PC端和移动端,任何前端框架均可使用一、安装npminstallsmooth-signature#或yarnaddsmooth-signature 或通过<script>引用,全局变量......
  • 易基因:番茄果实采后处理成熟诱导的DNA甲基化和转录组综合分析 | 作物研究
    番茄果实成熟是一个复杂的生理过程,涉及关键基因的去甲基化,改变其转录水平,从而触发一系列生理事件。然而果实采摘后的处理方法,如冷藏、化学处理等,虽然能延长番茄的货架寿命,但通常可能会降低果实品质,目前尚不清楚这些过程是如何改变的。因此,研究采后处理诱导的番茄果实DNA甲基化和转......
  • 空间表观组学与转录组学联合分析
    作者,EvilGenius参考文章Spatialepigenome–transcriptomeco-profilingofmammaliantissues|Nature单细胞多组学,特别是染色质可及性表观遗传和转录组同时测序分析,可以不仅鉴别细胞类型和状态同时还可以揭示控制基因表达的机理–常常被认为是单细胞组学分析的终极利器......
  • Nature Climate Change | 气候变暖会造成未来全球干旱区面积扩张?
    在气候变暖的情况下,旱地通常被预测将在全球范围内扩大,旱地包括以水资源有限、植被稀疏为特征的土地区域。然而,这种预测依赖于旱地的大气代用物,即干旱指数。最近的研究表明,干旱指数对陆地水循环的各种组成部分的预测在质量上是不正确的。来自美国哈佛大学(HarvardUniversity)......
  • Nature Electronics|微器件在柔性基底上的高密度集成(可穿戴电子/界面调控/电子皮肤/柔
    2024年4月22日,韩国首尔大学YongtaekHong和美国斯坦福大学ByeongmoonLee团队,在《NatureElectronics》上发布了一篇题为“Asite-selectiveintegrationstrategyformicrodevicesonconformablesubstrates”的论文。论文内容如下:一、摘要        微器件可以被......
  • 课前准备-单细胞转录组联合VDJ数据分析
    作者,EvilGenius而我们需要实现的分析,即VDJ聚类与motif分析分析会在课上讲到,报名链接在2024年单细胞空间系列课程完整脚本如下(封装版)importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimportrandomimporttensorflowastffr......