UNet2DConditionModel总体结构
图片来自于 https://zhuanlan.zhihu.com/p/635204519
stable diffusion 运行unet部分的代码。
noise_pred = self.unet(
sample=latent_model_input, #(2,4,64,64) 生成的latent
timestep=t, #时刻t
encoder_hidden_states=prompt_embeds, #(2,77,768) #输入的prompt和negative prompt 生成的embedding
timestep_cond=timestep_cond,#默认空
cross_attention_kwargs=self.cross_attention_kwargs, #默认空
added_cond_kwargs=added_cond_kwargs, #默认空
return_dict=False,
)[0]
1.time
get_time_embed使用了sinusoidal timestep embeddings,
time_embedding 使用了两个线性层和激活层进行映射,将320转换到1280。
如果还有class_labels,added_cond_kwargs等参数,也转换为embedding,并且相加。
t_emb = self.get_time_embed(sample=sample, timestep=timestep) #(2,320)
emb = self.time_embedding(t_emb, timestep_cond) #(2,1280)
2.pre-process
卷积转换,输入latent从(2,4,64,64) 到(2,320,64,64)
sample = self.conv_in(sample) #(2,320,64,64)
self.conv_in = nn.Conv2d(
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
)
3.down
down_block 由三个CrossAttnDownBlock2D和一个DownBlock2D组成。输入包括:
hidden_states:latent
temb:时刻t的embdedding
encoder_hidden_states:prompt和negative prompt的embedding
网络结构
CrossAttnDownBlock2D(
ResnetBlock2D()
Transformer2DModel()
ResnetBlock2D()
Transformer2DModel()
Downsample2D() #(2,320,32,32)
)
CrossAttnDownBlock2D(
ResnetBlock2D()
Transformer2DModel()
ResnetBlock2D()
Transformer2DModel()
Downsample2D() #(2,640,16,16)
)
CrossAttnDownBlock2D(
ResnetBlock2D()
Transformer2DModel()
ResnetBlock2D()
Transformer2DModel()
Downsample2D() #(2,1280,8,8)
)
DownBlock2D(
ResnetBlock2D()
ResnetBlock2D() #(2,1280,8,8)
)
4.mid
UNetMidBlock2DCrossAttn 包含 resnet,attn,resnet三个模块,输入输出维度不变。输入包括:
hidden_states:latent
temb,时刻t的embdedding
encoder_hidden_states:prompt和negative prompt的embedding
UNetMidBlock2DCrossAttn(
ResnetBlock2D()
Transformer2DModel()
ResnetBlock2D()
)
5.up
up由一个UpBlock2D和三个CrossAttnUpBlock2D组成,输入包括:
hidden_states:latent
temb: 时刻t的embdedding
encoder_hidden_states:prompt和negative prompt的embedding
res_hidden_states_tupleL:下采样时记录的残差结果。
UpBlock2D(
ResnetBlock2D()
ResnetBlock2D()
ResnetBlock2D()
Upsample2D() #(2,1280,16,16)
)
CrossAttnUpBlock2D(
ResnetBlock2D()
Transformer2DModel()
ResnetBlock2D()
Transformer2DModel()
ResnetBlock2D()
Transformer2DModel()
Downsample2D() #(2,1280,32,32)
)
CrossAttnUpBlock2D(
ResnetBlock2D()
Transformer2DModel()
ResnetBlock2D()
Transformer2DModel()
ResnetBlock2D()
Transformer2DModel()
Downsample2D() #(2,640,64,64)
)
CrossAttnUpBlock2D(
ResnetBlock2D() #(2,320,64,64)
Transformer2DModel()
ResnetBlock2D()
Transformer2DModel()
ResnetBlock2D()
Transformer2DModel()
)
6.post-process
卷积变换通道数,得到最终结果
if self.conv_norm_out:
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample) #(2,4,64,64)
时刻t,类别class等参数作用在resnet部分,都是和输入直接相加。
由prompt,negative prompt 计算得到的encoder_hidden_states,作用在attention部分,作为key和value,参与计算。
ResnetBlock2D
x在标准化、激活、卷积之后,和temb相加,再次标准化、激活、卷积之后作为残差,与x相加。
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states) #激活函数
hidden_states = self.conv1(hidden_states)
if self.time_emb_proj is not None:
if not self.skip_time_act:
temb = self.nonlinearity(temb)
temb = self.time_emb_proj(temb)[:, :, None, None] #(2,320,1,1)
if self.time_embedding_norm == "default":
if temb is not None:
hidden_states = hidden_states + temb #与temb相加
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
return output_tensor
Transformer2DModel attentions部分
每个attention 包括 Self-Attention 和Cross-Attention两部分。
#Self-Attention ,encoder_hidden_states=None
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
#Cross-Attention,encoder_hidden_states由prompt计算得来,在这里和latent交互。
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
#query由norm_hidden_states计算而来,
#key、value由encoder_hidden_states计算而来。
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) #(2,8,4096,40)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) #(2,8,77,40)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) #(2,8,77,40)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False #(2,8,4096,40)
)
参考:stable diffusion 中使用的 UNet 2D Condition Model 结构解析(diffusers库)
标签:diffusion,self,UNet2DConditionModel,states,Transformer2DModel,ResnetBlock2D,stab From: https://blog.csdn.net/zhilaizhiwang/article/details/140683649