首页 > 其他分享 >YOLOv10改进 | 注意力篇 | YOLOv10引入ParNetAttention注意力

YOLOv10改进 | 注意力篇 | YOLOv10引入ParNetAttention注意力

时间:2024-07-17 10:57:42浏览次数:15  
标签:YOLOv10 网络 CIFAR ParNetAttention https 深度 注意力

1. ParNetAttention介绍

1.1  摘要:深度是深度神经网络的标志。但是,深度越大,意味着顺序计算越多,延迟也越长。这就引出了一个问题--有没有可能建立高性能的“非深度”神经网络?我们证明了这一点。为此,我们使用并行子网,而不是一层接一层堆叠。这有助于在保持高性能的同时有效地减少深度。通过使用并行子结构,我们首次证明,深度仅为12的网络在ImageNet、CIFAR 10和CIFAR 100上的准确率分别超过80%、96%和81%,可达到前1名的准确率。我们还表明,具有低深度(12)骨干网的网络可以在MS-COCO上实现48%的AP。我们分析了我们的设计的扩展规则,并展示了如何在不改变网络深度的情况下提高性能。最后,我们为如何使用非深度网络构建低延迟识别系统提供了一个概念证明。

官方论文地址:https://arxiv.org/pdf/2110.07641

官方代码地址:https://github.com/imankgoyal/NonDeepNetworks

1.2  简单介绍:  

 

标签:YOLOv10,网络,CIFAR,ParNetAttention,https,深度,注意力
From: https://blog.csdn.net/tsg6698/article/details/140487474

相关文章

  • YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10引入结合EMAttention和ParNetAttention形
    1.EPAAttention介绍     EPAAttention注意力机制综合了EMAttention和ParNetAttention的优势,能够更有效地提取图像特征。     (1).综合性与多样性     EPAAttention结合了两种不同的注意力机制,充分利用了EMAttention的分组归一化和特征增强......
  • 《YOLOv10改进实战专栏》专栏介绍 & 专栏目录
    《YOLOv10改进实战专栏》介绍及目录YOLOv10官方仓库地址专栏地址:点击跳转专栏导航如下:......
  • YOLOv10改进 | 注意力篇 | YOLOv10引入Shuffle Attention注意力
    1. ShuffleAttention介绍1.1 摘要:注意力机制使神经网络能够准确地关注输入的所有相关元素,已成为提高深度神经网络性能的重要组成部分。计算机视觉研究中广泛使用的注意力机制主要有两种:空间注意力和通道注意力,其目的分别是捕获像素级的成对关系和通道依赖性。虽然将它......
  • 注意力机制中三种掩码技术详解和Pytorch实现
    注意力机制是许多最先进神经网络架构的基本组成部分,比如Transformer模型。注意力机制中的一个关键方面是掩码,它有助于控制信息流,并确保模型适当地处理序列。在这篇文章中,我们将探索在注意力机制中使用的各种类型的掩码,并在PyTorch中实现它们。在神经网络中,掩码是一种用于阻止模......
  • vit的自注意力机制的范围
    在VisionTransformer(ViT)中,自注意力机制的范围是指模型在处理图像块时,每个图像块能够与其他哪些图像块进行交互。ViT的自注意力机制具有全局范围,这意味着在自注意力层中,每个图像块都可以与其他所有图像块进行交互,而不管它们在原始图像中的空间位置如何。以下是ViT自......
  • 助力智慧交通,基于YOLO家族最新端到端实时目标检测算法YOLOv10全系列【n/s/m/b/l/x】参
    交通标志检测是交通标志识别系统中的一项重要任务。与其他国家的交通标志相比,中国的交通标志有其独特的特点。卷积神经网络(CNN)在计算机视觉任务中取得了突破性进展,在交通标志分类方面取得了巨大的成功。CCTSDB数据集是由长沙理工大学的相关学者及团队制作而成的,其有交通标志样......
  • YOLOv8 with Attention 注意力机制
    本文来源于:YOLOv8-AM:YOLOv8withAttentionMechanismsforPediatricWristFractureDetection代码:github总的结构图,可以看到注意力机制模块被加载在neck部分,在upsample、C2f之后。相比yolov8的模型配置文件,根据以上结构图,在每次upsanple、C2f模块后,添加了注意力机......
  • Lookback Lens:用注意力图检测和减轻llm的幻觉
    在总结文章或回答给定段落的问题时,大语言模型可能会产生幻觉,并会根据给定的上下文回答不准确或未经证实的细节,这也被称为情境幻觉。为了解决这个问题,这篇论文的作者提出了一个简单的幻觉检测模型,其输入特征由上下文的注意力权重与新生成的令牌(每个注意头)的比例给出。它被......
  • 【CPO-TCN-BiGRU-Attention回归预测】基于冠豪猪算法CPO优化时间卷积双向门控循环单元
    %数据准备%假设有一个输入变量X和一个目标变量Y%假设数据已经存储在X和Y中,每个变量为列向量%参数设置inputWindowSize=10;%输入窗口大小outputWindowSize=1;%输出窗口大小numFeatures=1;%输入变量的数量numFilters=32;%TCN中的滤波器数......
  • Lookback Lens:用注意力图检测和减轻llm的幻觉
    在总结文章或回答给定段落的问题时,大语言模型可能会产生幻觉,并会根据给定的上下文回答不准确或未经证实的细节,这也被称为情境幻觉。为了解决这个问题,这篇论文的作者提出了一个简单的幻觉检测模型,其输入特征由上下文的注意力权重与新生成的令牌(每个注意头)的比例给出。它被称为回......