这可不是基础题的第k小数哈。
自己想出来的,感觉要容易想到,使用可持久化线段树,时间上要比y的慢一倍。大体思想就是,我们从小到大依次加入一个数,每加入一个就记录一个版本,线段树里记录区间里数的数量,在查询时,只要二分出区间数的数量大于等于k的最小版本即可,这个版本对应插入的点就是要求的第 k 小点,时间复杂度是 \(O(n\log^2n)\) 的和 y 是一个量级的,可能是由于常数问题,所以运行上要慢。
题目链接
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N = 100010;
int n, m;
int idx, root[N], cnt;
int g[N];
struct node
{
int v, id;
bool operator<(const node &W)const
{
return v < W.v;
}
}a[N];
struct Node
{
int l, r;
int v, sum = 0;
}tr[N * 4 + N * (int)ceil(log2(N))];
void pushup(int u)
{
int &l = tr[u].l, &r = tr[u].r;
tr[u].sum = tr[l].sum + tr[r].sum;
}
int build(int l, int r)
{
int p = ++ idx;
if (l == r)
{
tr[p].v = -0x3f3f3f3f;
tr[p].sum = 0;
return p;
}
int mid = l + r >> 1;
tr[p].l = build(l, mid);
tr[p].r = build(mid + 1, r);
pushup(p);
return p;
}
int insert(int p, int l, int r, int x, int k)
{
int q = ++ idx;
tr[q] = tr[p];
if (l == r)
{
tr[q].v = k;
if (k > -0x3f3f3f3f) tr[q].sum = 1;
return q;
}
int mid = l + r >> 1;
if (x <= mid) tr[q].l = insert(tr[p].l, l, mid, x, k);
else tr[q].r = insert(tr[p].r, mid + 1, r, x, k);
pushup(q);
return q;
}
int query(int p, int l, int r, int x, int y)
{
if (x <= l && r <= y) return tr[p].sum;
int mid = l + r >> 1;
int sum = 0;
if (x <= mid) sum += query(tr[p].l, l, mid, x, y);
if (y > mid) sum += query(tr[p].r, mid + 1, r, x, y);
return sum;
}
bool check(int x, int l, int r, int k)
{
return query(root[x], 1, n, l, r) >= k;
}
int main()
{
cin >> n >> m;
root[0] = build(1, n);
for (int i = 1; i <= n; i ++ )
{
int x;
scanf("%d", &x);
a[i] = {x, i};
g[i] = x;
}
sort(a + 1, a + n + 1);
for (int i = 1; i <= n; i ++ )
{
root[i] = insert(root[i - 1], 1, n, a[i].id, a[i].v);
// cout << i << endl;
}
while (m -- )
{
int ls, rs, k;
scanf("%d%d%d", &ls, &rs, &k);
int l = 0, r = n, mid;
while (l < r)
{
mid = l + r >> 1;
if (check(mid, ls, rs, k)) r = mid;
else l = mid + 1;
}
printf("%d\n", a[l].v);
}
// cout << query(root[5], 1, n, 2, 5);
return 0;
}
标签:return,int,sum,tr,mid,include,小数
From: https://www.cnblogs.com/blind5883/p/18262484