Given an array of positive integers nums
and a positive integer target
, return the minimal length of a
subarray
whose sum is greater than or equal to target
. If there is no such subarray, return 0
instead.
Example 1:
Input: target = 7, nums = [2,3,1,2,4,3] Output: 2 Explanation: The subarray [4,3] has the minimal length under the problem constraint.
Example 2:
Input: target = 4, nums = [1,4,4] Output: 1
Example 3:
Input: target = 11, nums = [1,1,1,1,1,1,1,1] Output: 0
Constraints:
1 <= target <= 109
1 <= nums.length <= 105
1 <= nums[i] <= 104
Follow up: If you have figured out the O(n)
solution, try coding another solution of which the time complexity is O(n log(n))
.
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int i=0;
int result=INT32_MAX;
int sum=0;
int subLength=0;
for(int j=0;j<nums.size();j++){
sum+=nums[j];
while(sum>=target){
subLength=j-i+1;
result=min(result,subLength);
sum=sum-nums[i++];
}
}
return result==INT32_MAX?0:result;
}
};
注意:滑动窗口
1.i表示起始位置,j表示终止位置
2.sum>=target要用while,而不是if
3.return的时候要多加上一个二元判断
标签:return,target,nums,209,Sum,int,result,Subarray,sum From: https://blog.csdn.net/2301_80161204/article/details/139717649