转自:https://www.cnblogs.com/miraclepbc/p/14345342.html
相关包导入
import torch
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from torch import nn
import torch.nn.functional as F
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
import torchvision
from torchvision import datasets, transforms
%matplotlib inline
设置device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
如果cuda是可用的,那么就使用"cuda:0",否则使用"cpu"
数据加载
transformation = transforms.Compose([
transforms.ToTensor(), ## 转化为一个tensor, 转换到0-1之间, 将channnel放在第一位
])
train_ds = datasets.MNIST(
'E:/datasets2/1-18/dataset/daatset',
train = True,
transform =transformation,
download = True
)
test_ds = datasets.MNIST(
'E:/datasets2/1-18/dataset/daatset',
train = False,
transform = transformation,
download = True
)
train_dl = DataLoader(train_ds, batch_size = 64, shuffle = True)
test_dl = DataLoader(test_ds, batch_size = 258)
模型定义
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
#参数分别为n_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True
self.pool = nn.MaxPool2d((2, 2))
self.conv2 = nn.Conv2d(6, 16, 5)
self.linear_1 = nn.Linear(16 * 4 * 4, 256)
self.linear_2 = nn.Linear(256, 10)
def forward(self, input):
x = F.relu(self.conv1(input))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
# print(x.size())
x = x.view(-1, 16 * 4 * 4)
x = F.relu(self.linear_1(x))
x = self.linear_2(x)
return x
loss_func = torch.nn.CrossEntropyLoss()
这里需要注意一点是,卷积、池化之后是不知道数据的shape的,因此可以采用print的方法,测试一下
具体来说,就是先在全连接层的维度那里随便设置值,然后打印一下
在输出框里,会出现正确的值,这时再将之前随便设置的值修正过来即可
模型训练
def fit(epoch, model, trainloader, testloader):
correct = 0
total = 0
running_loss = 0
for x, y in trainloader:
x, y = x.to(device), y.to(device)
y_pred = model(x)
loss = loss_func(y_pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
y_pred = torch.argmax(y_pred, dim = 1)
correct += (y_pred == y).sum().item()
total += y.size(0)
running_loss += loss.item()
epoch_acc = correct / total
epoch_loss = running_loss / len(trainloader.dataset)
test_correct = 0
test_total = 0
test_running_loss = 0
with torch.no_grad():
for x, y in testloader:
x, y = x.to(device), y.to(device)
y_pred = model(x)
loss = loss_func(y_pred, y)
y_pred = torch.argmax(y_pred, dim = 1)
test_correct += (y_pred == y).sum().item()
test_total += y.size(0)
test_running_loss += loss.item()
epoch_test_acc = test_correct / test_total
epoch_test_loss = test_running_loss / len(testloader.dataset)
print('epoch: ', epoch,
'loss: ', round(epoch_loss, 3),
'accuracy: ', round(epoch_acc, 3),
'test_loss: ', round(epoch_test_loss, 3),
'test_accuracy: ', round(epoch_test_acc, 3))
return epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc
model = Model()
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc = fit(epoch, model, train_dl, test_dl)
train_loss.append(epoch_loss)
train_acc.append(epoch_acc)
test_loss.append(epoch_test_loss)
test_acc.append(epoch_test_acc)
这里需要注意的地方是,如果要调用gpu,那么需要将模型和数据都转移到gpu上
因此,需要调用.to(device)方法进行转移