首页 > 其他分享 >(7-4-03)反馈控制与系统稳定性:四轴飞行器仿真与控制系统(2)四轴飞行器的环境模拟(3)

(7-4-03)反馈控制与系统稳定性:四轴飞行器仿真与控制系统(2)四轴飞行器的环境模拟(3)

时间:2024-06-01 21:34:01浏览次数:26  
标签:body std 四轴 飞行器 self action state np 环境模拟

(9)reset(self, det_state=None):用于初始化环境的状态,可以选择指定明确的初始状态(det_state),否则将生成一个随机状态。返回初始状态和对应的零控制动作。

    def reset(self, det_state = None):
        state = []
        action = []
        self.action_hist = []

        self.robust_parameters.reset()

        self.solved = 0
        self.done = False
        self.i = 0   
        self.prev_shaping = None
        self.previous_state = np.zeros(self.state_size)
        self.abs_sum = 0
        
        if det_state is not None:        
            self.previous_state = det_state
            q = np.array([self.previous_state[6:10]]).T
            self.ang = quat_euler(q)
        else:
            self.ang = np.random.rand(3)-0.5
            Q_in = euler_quat(self.ang)
            self.previous_state[0:5:2] = np.clip((np.random.normal([0, 0, 0], 2)), -BB_POS/2, BB_POS/2)
            self.previous_state[1:6:2] = np.clip((np.random.normal([0, 0, 0], 2)), -BB_VEL/2, BB_VEL/2)
            self.previous_state[6:10] = Q_in.T
            self.previous_state[10:13] = np.clip((np.random.normal([0, 0, 0], 2)), -BB_VEL*1.5, BB_POS*1.5)
        
        for i in range(self.T):
            self.action = self.zero_control
            self.action_hist.append(self.action)

            state_t, reward, done = self.step(self.action)
            state.append(state_t.flatten())
            action.append(self.zero_control)
        return np.array(state), np.array(action)

(10)step(self, action):用于在环境中执行一步动作。如果使用直接控制标志,将执行直接控制;否则,将使用电机输入计算四个电机的角速度,然后通过积分求解微分方程更新环境状态。返回更新后的状态、奖励和标志指示是否完成。

    def step(self, action):
        self.i += 1
        if self.direct_control_flag:
            self.action = np.clip(action,-1,1)
            u = self.action
            self.clipped_action = self.action
            self.step_effort = self.action
        else:
            self.action = action
            self.step_effort, self.w, f_in, m_action = self.f2w(action[0], np.array([action[1::]]).T)
            self.clipped_action = np.append([f_in], m_action)
            u = self.clipped_action
       
        self.action_hist.append(self.clipped_action)
        
        self.y = (integrate.solve_ivp(self.drone_eq, (0, self.t_step), self.previous_state, args=(u, ))).y
        
        self.state = np.transpose(self.y[:, -1])
        self.quat_state = np.array([np.concatenate((self.state[0:10], self.V_q))])
        
        q = np.array([self.state[6:10]]).T
        q = q/np.linalg.norm(q)

        self.ang = quat_euler(q)
        self.ang_vel = (self.ang - self.prev_ang)/self.t_step
        self.prev_ang = self.ang
        self.previous_state = self.state
        self.done_condition()
        self.reward_function()
        self.control_effort()
        return self.state, self.reward, self.done

(11)done_condition(self):用于检查环境是否满足终止条件,根据状态中的位置、角度等信息,判断是否满足预定条件,如果满足则将标志 done 设置为 True。

    def done_condition(self):
        cond_x = np.concatenate((self.state[1:6:2], self.ang, self.state[-3:]))
        for x, c in zip(np.abs(cond_x), self.bb_cond):
            if  x >= c:
                self.done = True

(12)reward_function(self, debug=0):用于计算当前状态下的奖励。能够根据速度、角度等信息计算 shaping 奖励,并根据控制动作的绝对值计算控制努力奖励。如果环境状态达到预定目标,给予额外的解决奖励。

    def reward_function(self, debug=0):
        self.reward = 0
        
        velocity = self.state[1:6:2]
        euler_angles = self.ang
        psi = self.ang[2]
        body_ang_vel = self.state[-3:]
        action = self.action
        shaping = -SHAPING_WEIGHT/np.sum(SHAPING_INTERNAL_WEIGHTS)*(SHAPING_INTERNAL_WEIGHTS[0]*norm(velocity/BB_VEL)+
                        SHAPING_INTERNAL_WEIGHTS[1]*norm(psi/4)+
                        SHAPING_INTERNAL_WEIGHTS[2]*norm(euler_angles[0:2]/BB_ANG))

        #CASCADING REWARDS
        r_state = np.concatenate((velocity, [psi]))  

        for TR_i, TR_Pi in zip(TR, TR_P): 
            if norm(r_state) < norm(np.ones(len(r_state))*TR_i):
                shaping += TR_Pi
                if norm(euler_angles[0:2]) < norm(np.ones(2)*TR_i*4):
                    shaping += TR_Pi
                break

        if self.prev_shaping is not None:
            self.reward = shaping - self.prev_shaping
        self.prev_shaping = shaping

        ## TOTAL REWARD SHAPING ##
        abs_control = -np.sum(np.square(action - self.zero_control)) * P_C
        self.reward += + abs_control 
        
        #SOLUTION ACHIEVED?
        self.target_state = 9*(TR[0]**2)
        self.current_state = np.sum(np.square(np.concatenate((velocity, euler_angles, body_ang_vel))))      

        if self.current_state < self.target_state:
            self.reward += SOLVED_REWARD
            self.solved = 1
            if self.ppo_training:
                self.done = True              
        elif self.i >= self.n:
            self.reward = self.reward
            self.solved = 0   
            self.done=True
        elif self.done:
            self.reward += BROKEN_REWARD
            self.solved = 0 

(13)control_effort(self):用于计算控制努力。通过计算当前步骤的电机输入与零控制的差异来度量控制的努力,并累积到 abs_sum 变量中。        

    def control_effort(self):
        instant_effort = np.sqrt(np.sum(np.square(self.step_effort-np.array([0*M*G, 0, 0, 0]))))
        self.abs_sum += instant_effort

(14)定义类sensor,表示一个虚拟传感器集合,模拟了在飞行器(或其他飞行器)环境中可能使用的传感器的行为。这些传感器包括加速度计、陀螺仪、磁力计和GPS等,用于感知飞行器的状态和环境信息。函数__init__(self, env, accel_std=0.1, ...)用于初始化传感器对象。接收一个环境对象和一系列传感器参数,包括加速度计、陀螺仪、磁力计和GPS的噪声标准差和漂移。初始化传感器误差标志,并调用bias_reset方法进行偏差初始化。

class sensor():
    def __init__(self, env,
                 accel_std = 0.1, accel_bias_drift = 0.0005, 
                 gyro_std = 0.035, gyro_bias_drift = 0.00015, 
                 magnet_std = 15, magnet_bias_drift = 0.075, 
                 gps_std_p = 1.71, gps_std_v=0.5):
        
        self.std = [accel_std, gyro_std, magnet_std, gps_std_p, gps_std_v]
        self.b_d = [accel_bias_drift, gyro_bias_drift, magnet_bias_drift]
        self.quad = env
        self.error = True
        self.bias_reset()

(15)bias_reset(self):用于重置传感器偏差。根据设定的标准差和漂移,生成加速度计、陀螺仪、磁力计、GPS的随机偏差。初始化旋转矩阵R为单位矩阵。

    def bias_reset(self):        
        self.a_std = self.std[0]*self.error
        self.a_b_d = (np.random.random()-0.5)*2*self.b_d[0]*self.error        
        self.g_std = self.std[1]*self.error
        self.g_b_d = (np.random.random()-0.5)*2*self.b_d[1]*self.error        
        self.m_std = self.std[2]*self.error
        self.m_b_d = (np.random.random()-0.5)*2*self.b_d[2]*self.error        
        self.gps_std_p = self.std[3]*self.error
        self.gps_std_v = self.std[4]*self.error
        self.R = np.eye(3)

(16)accel(self):用于获取模拟加速度计的读数。考虑了加速度计漂移,返回带有随机误差的加速度计读数。

    def accel(self):

        self.a_b_accel = self.a_b_accel + self.a_b_d*self.quad.t_step
        read_error = np.random.normal(self.a_b_accel, self.a_std, 3)
        read_accel_body = self.quad.accelerometer_read.flatten()
        return read_accel_body+read_error

(17)accel_grav(self, norm=True):用于模拟获取包含重力的加速度计读数。考虑了加速度计漂移和随机误差,返回读取的加速度计与重力矢量的合成。

    def accel_grav(self, norm=True):
        gravity_vec = np.array([0, 0, -9.81])
        self.a_b_grav = self.a_b_grav + self.a_b_d*self.quad.t_step
        #Gravity vector as read from body sensor
        gravity_body = np.dot(self.quad.mat_rot.T, gravity_vec)+ np.random.normal(np.random.random(3)*self.a_b_grav, self.a_std, 3)
        if norm:
            ax = gravity_body[0]
            ay = gravity_body[1]
            az = gravity_body[2]
            if ax !=0 and ay != 0 and az != 0:
                # Normalise accelerometer measurement
                recipNorm = 1/(math.sqrt(ax * ax + ay * ay + az * az))
                ax *= recipNorm
                ay *= recipNorm
                az *= recipNorm
                gravity_body = np.array([[ax, ay, az]], dtype='float32')
        return gravity_body

(18)mag_gauss(self, norm=True):用于模拟获取包含磁场信息的磁力计读数。考虑了磁力计漂移和随机误差,返回带有随机误差的磁力计读数。    

    def mag_gauss(self, norm=True):
        magnet_vec = np.array([-65.269, 165.115, -144.205])
        self.m_b = self.m_b + self.m_b_d*self.quad.t_step
        magnet_body = np.dot(self.quad.mat_rot.T, magnet_vec) + np.random.normal(np.random.random(3)*self.m_b, self.m_std, 3)
        mx = magnet_body[0]
        my = magnet_body[1]
        mz = magnet_body[2]
        if norm:
            recipNorm = 1/math.sqrt(mx * mx + my * my + mz * mz)
            mx *= recipNorm
            my *= recipNorm
            mz *= recipNorm
            magnet_body = np.array([mx, my, mz])
        return magnet_body

(19)gyro(self):用于模拟获取陀螺仪读数。考虑了陀螺仪漂移,返回了带有随机误差的陀螺仪读数。

    def gyro(self):
        self.g_b = self.g_b + self.g_b_d*self.quad.t_step
        read_error = np.random.normal(self.g_b, self.g_std, 3)
        read_gyro = self.quad.state[-3:].flatten()
        return np.array([read_error+read_gyro], dtype='float32').T       

(20) reset(self):用于重置传感器的状态。将传感器的各种偏差和初始状态重置为零,用于环境的重启。           

    def reset(self):
        self.a_b_grav = 0
        self.a_b_accel = 0
        self.m_b = 0
        self.g_b = 0
        self.acceleration_t0 = np.zeros(3)
        self.position_t0 = self.quad.state[0:5:2]
        self.velocity_t0 = self.quad.state[1:6:2]
        self.quaternion_t0 = self.quad.state[6:10]
        self.bias_reset()

(21)gps(self):用于模拟获取GPS的读数。考虑了GPS位置和速度的噪声,返回带有随机误差的GPS读数。

    def gps(self):

        read_error_pos = np.random.normal(0, self.gps_std_p, 3)

        read_error_vel = np.random.normal(0, self.gps_std_v, 3)

        gps_pos = self.quad.state[0:5:2].flatten()

        gps_vel = self.quad.state[1:6:2].flatten()

        return read_error_pos+gps_pos, read_error_vel+gps_vel   

(22)triad(self):功能是使用TRIAD算法估计姿态。使用加速度计和磁力计的读数,结合环境的旋转矩阵,返回四元数和估计的旋转矩阵。

    def triad(self):
        gravity_vec = np.array([0, 0, -G])
        magnet_vec = np.array([-65.269, 165.115,-144.205]) #mGauss
        #Magnetic Vector of Santo André - Brasil in MiliGauss
        #https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml#igrfwmm
        #Gravity vector as read from body sensor
        induced_acceleration = self.quad.f_in.flatten()/M - (self.R @ np.array([[0, 0, -G]]).T).flatten()
        gravity_body = self.accel() - induced_acceleration
        #Magnetic Field vector as read from body sensor
        magnet_body = self.quad.mat_rot.T @ (np.random.normal(magnet_vec, self.m_std))
        #Accel vector is more accurate
        #Body Coordinates
        gravity_body = gravity_body / np.linalg.norm(gravity_body)
        magnet_body = magnet_body / np.linalg.norm(magnet_body)
        t1b = gravity_body/np.linalg.norm(gravity_body)
        t2b = np.cross(gravity_body, magnet_body)
        t2b = t2b/np.linalg.norm(t2b)
        t3b = np.cross(t1b, t2b)
        t3b = t3b/np.linalg.norm(t3b)
        tb = np.vstack((t1b, t2b, t3b)).T
        #Inertial Coordinates
        gravity_vec = gravity_vec/np.linalg.norm(gravity_vec)
        magnet_vec = magnet_vec / np.linalg.norm(magnet_vec)
        t1i = gravity_vec/np.linalg.norm(gravity_vec)
        t2i = np.cross(gravity_vec, magnet_vec)        
        t2i = t2i/np.linalg.norm(t2i)
        t3i = np.cross(t1i, t2i)
        t3i = t3i/np.linalg.norm(t3i)
        ti = np.vstack((t1i, t2i, t3i)).T
        self.R = tb @ ti.T
        q = Rotation.from_matrix(self.R.T).as_quat()
        q = np.concatenate(([q[3]], q[0:3]))
        return q, self.R

(23)Madgwick_AHRS_Only_Acce:功能是通过Madgwick算法仅使用加速度计的姿态估计。通过加速度计和陀螺仪的测量值,以及前一时刻的四元数,返回通过Madgwick算法估计的新四元数。        

    def Madgwick_AHRS_Only_Accel(self, gyro_meas, accel_meas, q_ant):
        q0 = q_ant[0]
        q1 = q_ant[1]
        q2 = q_ant[2]
        q3 = q_ant[3]
        gx = gyro_meas[0]
        gy = gyro_meas[1]
        gz = gyro_meas[2]
        ax = accel_meas[0]
        ay = accel_meas[1]
        az = accel_meas[2]
        dt = 0.01
        beta = 0.1
        # Rate of change of quaternion from gyroscope
        qDot1 = 0.5 * (-q1 * gx - q2 * gy - q3 * gz)
        qDot2 = 0.5 * (q0 * gx + q2 * gz - q3 * gy)
        qDot3 = 0.5 * (q0 * gy - q1 * gz + q3 * gx)
        qDot4 = 0.5 * (q0 * gz + q1 * gy - q2 * gx)
        # Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
        if ax !=0 and ay != 0 and az != 0:
            # Normalise accelerometer measurement
            recipNorm = 1/(math.sqrt(ax * ax + ay * ay + az * az))
            ax *= recipNorm
            ay *= recipNorm
            az *= recipNorm
            # Auxiliary variables to avoid repeated arithmetic
            _2q0 = 2.0 * q0
            _2q1 = 2.0 * q1
            _2q2 = 2.0 * q2
            _2q3 = 2.0 * q3
            _4q0 = 4.0 * q0
            _4q1 = 4.0 * q1
            _4q2 = 4.0 * q2
            _4q3 = 4.0 * q3
            _8q1 = 8.0 * q1
            _8q2 = 8.0 * q2
            q0q0 = q0 * q0
            q1q1 = q1 * q1
            q2q2 = q2 * q2
            q3q3 = q3 * q3
            f_g1 = 2*(q0*q2 - q1*q3) - ax
            f_g2 = -2*(q0*q1 + q2*q3) - ay
            f_g3 = 2*(q1q1 + q2q2 - 0.5) - az

            # Gradient decent algorithm corrective step
            s0 = _2q2*f_g1 - _2q1*f_g2
            s1 = -_2q3*f_g1 - _2q0*f_g2 + _4q1*f_g3
            s2 = _2q0*f_g1 - _2q3*f_g2 + _4q2*f_g3
            s3 = -_2q1*f_g1 - _2q2*f_g2
            recipNorm = 1/ (math.sqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3)) ## normalise step magnitude
            s0 *= recipNorm
            s1 *= recipNorm
            s2 *= recipNorm
            s3 *= recipNorm
            # Apply feedback step
            qDot1 -= beta * s0
            qDot2 -= beta * s1
            qDot3 -= beta * s2
            qDot4 -= beta * s3
        # Integrate rate of change of quaternion to yield quaternion
        q0 += qDot1 * dt
        q1 += qDot2 * dt
        q2 += qDot3 * dt
        q3 += qDot4 * dt

        # Normalise quaternion
        recipNorm = 1 / (math.sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3))
        q0 *= recipNorm
        q1 *= recipNorm
        q2 *= recipNorm
        q3 *= recipNorm
        q = np.array([q0, q1, q2, q3])
        # print('q0: {0}, q1: {1}, q2: {2}, q3: {3}'.format(q[0], q[1], q[2], q[3]))p
        return q

(24)accel_int(self):用于模拟加速度计的积分功能。根据加速度计的读数,使用TRIAD算法得到的旋转矩阵,对加速度进行积分,返回加速度、速度和位置。

    def accel_int(self):
       accel_body = self.accel()      

        _, R = self.triad()             

        acceleration = np.dot(R, accel_body)

        velocity = self.velocity_t0 + acceleration*self.quad.t_step

        position = self.position_t0 + velocity*self.quad.t_step

        self.acceleration_t0 = acceleration

        self.velocity_t0 = velocity

        self.position_t0 = position

        return acceleration, velocity, position

(25)gyro_int(self):用于模拟陀螺仪的积分功能。通过获取陀螺仪的读数和前一时刻的四元数,使用四元数微分方程对四元数进行积分,返回更新后的四元数。

    def gyro_int(self):
        w = self.gyro()
        q = self.quaternion_t0
        V_q = deriv_quat(w, q).flatten()       
        for i in range(len(q)):
            q[i] = q[i] + V_q[i]*self.quad.t_step
        self.quaternion_t0 = q/np.linalg.norm(q)
        return q

(26)类plotter用于绘制仿真环境中飞行器的状态和控制信息。其中函数__init__(self, env, velocity_plot=False, depth_plot=False)用于初始化方法接受仿真环境对象以及可选的参数,例如是否绘制速度信息(velocity_plot)和是否绘制深度图(depth_plot),然后根据输入参数设置绘图的相关属性。

class plotter():
    def __init__(self, env, velocity_plot = False, depth_plot=False):        
        plt.close('all')
        self.figure = plt.figure('States')
        self.depth_plot = depth_plot
        self.env = env
        self.states = []
        self.times = []
        self.print_list = range(13)
        if velocity_plot:
            self.plot_labels = ['$\dot X$', '$\dot Y$', '$\dot Z$',
                                '', '', '',
                                '$\phi$', '$\\theta$', '$\psi$', 
                                '$T_{MH,1}$', '$T_{MH,2}$', '$T_{MH,3}$', '$T_{MH,4}$']
            self.axis_labels = ['Velocidade (ms)', 'Velocidade (ms)', 'Velocidade (ms)',
                                'Velocidade (ms)', 'Velocidade (ms)', 'Velocidade (ms)',
                                'Atitude (rad)', 'Atitude (rad)', 'Atitude (rad)', 
                                'Empuxo (N)', 'Empuxo (N)', 'Empuxo (N)', 'Empuxo (N)']
            self.depth_plot = False
        else:
            self.plot_labels = ['x', 'y', 'z',
                                '$\phi$', '$\theta$', '$\psi$', 
                                '$u_1$', '$u_2$', '$u_3$', '$u_4$']
            
        self.line_styles = ['-', '-', '-',
                            '--', '--', '--',
                            '--', '--', '--', 
                            ':', ':', ':', ':']
        self.color = ['r', 'g', 'b',
                      'r', 'g', 'b',
                      'r', 'g', 'b',
                      'r', 'g', 'b', 'c']
        self.plot_place = [0, 0, 0,
                           0, 0, 0,
                           1, 1, 1,
                           2, 2, 2, 2]
        self.velocity_plot = velocity_plot

(27)add(self, target):功能是接受飞行器的状态信息,并将其添加到绘图队列中。状态信息包括位置、姿态和控制输入等。根据初始化时的设置,可能包括速度信息。

    def add(self, target):
        if self.velocity_plot:
            # state = np.concatenate((self.env.state[1:6:2].flatten(), target[1:6:2], self.env.ang.flatten(), self.env.clipped_action.flatten()))
            state = np.concatenate((self.env.state[1:6:2].flatten(), target[1:6:2], self.env.ang.flatten(), (self.env.step_effort.flatten()+1)*T2WR*M*G/8 ))
        else:
            state = np.concatenate((self.env.state[0:5:2].flatten(), self.env.ang.flatten(), self.env.clipped_action.flatten()))
        self.states.append(state)
        self.times.append(self.env.i*self.env.t_step)

(28)clear(self):功能是清空绘图队列,准备绘制新的数据。

    def clear(self,):
        self.states = []
        self.times = []

(29)plot(self, nome='padrao'):功能是绘制累积的状态信息。根据初始化时的设置,可能绘制位置、姿态、速度等信息的时变曲线。如果启用了深度图,还会生成一个三维散点图。

    def plot(self, nome='padrao'):
        P = 0.7
        fig, self.axs = plt.subplots(3, figsize = (7, 7*1.414), dpi=300)
        # fig.suptitle(nome)
        self.states = np.array(self.states)
        self.times = np.array(self.times)
        for print_state, label, line_style, axis_place, color, name in zip(self.print_list, self.plot_labels, self.line_styles, self.plot_place, self.color, self.axis_labels):
            self.axs[axis_place].plot(self.times, self.states[:,print_state], label = label, ls=line_style, lw=0.8, color = color)
            self.axs[axis_place].legend()
            self.axs[axis_place].grid(True)
            self.axs[axis_place].set(ylabel=name)
        self.axs[2].axhline(y=T2WR*M*G/4)
        self.axs[2].axhline(y=0)
        # plt.xlabel('tempo (s)')
        # plt.savefig(nome+'.pgf', bbox_inches='tight')
        # plt.savefig(nome+'.png', bbox_inches='tight')
        # plt.title(nome[-40:])
        plt.show()
        if self.depth_plot:
            fig3d = plt.figure('3D map')
            ax = Axes3D(fig3d)
            ax.set_xlabel('x (m)')
            ax.set_ylabel('y (m)')       
            ax.set_zlabel('z (m)')    
            states = np.array(self.states)
            times = np.array(self.times)
            xs = self.states[:,0]
            ys = self.states[:,1]
            zs = self.states[:,2]
            t = self.times
            ax.scatter(xs,ys,zs,c=plt.cm.jet(t/max(t)))
            ax.plot3D(xs,ys,zs,linewidth=0.5)
            ax.set_xlim(-BB_POS, BB_POS)
            ax.set_ylim(-BB_POS, BB_POS)
            ax.set_zlim(-BB_POS, BB_POS)
            plt.grid(True)
            plt.show()
            
        self.clear()

未完待续

标签:body,std,四轴,飞行器,self,action,state,np,环境模拟
From: https://blog.csdn.net/asd343442/article/details/139379773

相关文章

  • 基于STM32四轴飞行器电路方案设计
    **单片机设计介绍,基于STM32四轴飞行器电路方案设计文章目录一概要二、功能设计设计思路三、软件设计原理图五、程序六、文章目录一概要  基于STM32的四轴飞行器电路方案设计概要如下:一、引言本设计采用STM32作为核心处理器,结合现代电子技术和传感器技......
  • 四轴飞行器玩具软件技术服务
    广东四轴飞行器玩具软件技术服务。东莞市酷得智能科技有限公司成立于广东省东莞市松山湖高新产业园区,我们专注于电子类方案开发设计,提供多类型的IC采购服务。酷得的益智玩具软件方案定制服务旨在为客户提供一站式的解决方案,帮助其在竞争激烈的市场中脱颖而出。酷得将以专业......
  • SkyEye:助力飞行器状态控制系统仿真
    ​飞行器与常见的航天器一样,属于安全关键领域的大型复杂设备,对安全性、可靠性有着极高的要求。为保证稳定飞行,需要对目标对象进行实时跟踪,通过发出正确的修正偏差指令来操纵飞行器改变飞行姿态,因此对飞行器状态控制系统的研究极其重要。飞行器状态控制系统是用于自动稳定和控制飞......
  • 低气压试验箱:低压环境模拟的得力助手
    低气压试验箱是一种用于测试产品在低气压环境下的性能和可靠性的重要设备。随着科技的发展,许多产品需要在不同的环境和气候条件下运行,因此低气压试验箱成为了质量保证和产品研发过程中不可或缺的一部分。上海和晟HS系列低气压试验箱低气压试验箱的核心部分是它的密封舱,通常被设计......
  • clumsy 0.3 发布,十年前推出的差网络环境模拟工具
    clumsy0.3现已发布,距离v0.1版本已经过去了十年的时间。clumsy能在Windows平台下人工造成不稳定的网络状况,方便你调试应用程序在极端网络状况下的表现。0.3二进制文件与一年半前发布的0.3RC4相同。将滞后时间上限提高到15秒改用zig0.9.0生成二进制文件......
  • 一种电磁式爆炸分离冲击环境模拟试验技术研究
    (1)研究背景与意义(要解决什么问题):    爆炸分离冲击是航天器所经历的最严酷的力学环境之一,为了避免一些箭载仪器设备或者结构在飞行中损坏,因此需要进行爆炸分离冲击环境试验。由于针对宽频响、高幅值的爆炸分离冲击环境的模拟无法对冲击加载载荷进行准确的测量与描述,且实验系......
  • 四旋翼飞行器的动力学、控制和路径规划matlab仿真
    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。......
  • 四旋翼飞行器 基于多面体表示的障碍物感知拓扑规划
    鲁棒性和有效性的运动规划算法是四旋翼飞行器在复杂环境下实现自主飞行的关键。环境表征作为感知模块与规划模块之间的桥梁,对生成轨迹的质量有着巨大的影响。人们提出了各种算法来构建导航地图,每种算法对应不同的规划方法。为了提高四旋翼飞行器的自主导航能力,哈尔滨工业大学的研......
  • 西门子S7-1200PLC 四轴定位控制程序(自动螺丝机) 程序是基于S7-1200 PLC (CPU 1214C ),
    西门子S7-1200PLC四轴定位控制程序(自动螺丝机)程序是基于S7-1200PLC(CPU1214C),博途V13SP1编写。程序中利用TOAXIS运动控制指令编写4轴定位程序,利用易福门相机视觉专用功能块(FB1FB2SCL高级语言)与PLC以太网通信,采集相机坐标位置参数。ID:1635602376517476......
  • 消防系统飞行器行业市场调研趋势分析报告2023-2029
    2023-2029全球消防系统飞行器行业调研及趋势分析报告2022年全球消防系统飞行器市场规模约亿元,2018-2022年年复合增长率CAGR约为%,预计未来将持续保持平稳增长的态势,到2029年市场规模将接近亿元,未来六年CAGR为%。从核心市场看,中国消防系统飞行器市场占据全球约%的市场份额,为全......