Invoke: 和差化积公式: https://www.cnblogs.com/Preparing/p/18182768
根据 和差化积 推衍出 积化和差
procedure
\[\begin{align} 序1: 已知和差化积公式:\\ \sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \\ 设\alpha\Rightarrow\alpha+\beta, \quad \beta\Rightarrow\alpha-\beta \\ \\ \Rightarrow \sin\left[ \frac{\left(\alpha+\beta\right)+\left(\alpha-\beta\right)}{2} \right] \cos\left[\frac{\left(\alpha+\beta\right)-\left(\alpha-\beta\right)}{2}\right] =\frac{\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)}{2} \\ \\ \Rightarrow\sin\alpha\cos\beta= \frac{\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)}{2} \\ \\ 获得公式1: \\ \sin\alpha\cos\beta= \frac{\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)}{2} \\ \\ \\ 序2: 已知和差化积公式:\\ \sin\alpha-\sin\beta=2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \\ 设\alpha\Rightarrow\alpha+\beta, \quad \beta\Rightarrow\alpha-\beta \\ \\ \Rightarrow\cos[\frac{(\alpha+\beta)+(\alpha-\beta)}{2}]\sin[\frac{(\alpha+\beta)-(\alpha-\beta)}{2}] =\frac{\sin(\alpha+\beta)-\sin(\alpha-\beta)}{2} \\ \\ \Rightarrow\cos\alpha\sin\beta=\frac{\sin(\alpha+\beta)-\sin(\alpha-\beta)}{2} \\ \\ 获得公式2: \\ \cos\alpha\sin\beta=\frac{\sin(\alpha+\beta)-\sin(\alpha-\beta)}{2} \\ \\ \\ 序3: 已知和差化积公式: \\ \cos\alpha+\cos\beta=2\cos\frac{(\alpha+\beta)}{2}\cos\frac{\alpha-\beta}{2} \\ \\ 设\alpha\Rightarrow\alpha+\beta, \quad \beta\Rightarrow\alpha-\beta \\ \\ \cos\left[\frac{(\alpha+\beta)+(\alpha-\beta)}{2}\right]\cos\left[\frac{(\alpha+\beta)-(\alpha-\beta)}{2}\right] =\frac{\cos\left(\alpha+\beta\right)+\cos\left(\alpha-\beta\right)}{2} \\ \\ \Rightarrow \cos\alpha\cos\beta=\frac{\cos\left(\alpha+\beta\right)+\cos\left(\alpha-\beta\right)}{2} \\ \\ 获得公式3: \\ \cos\alpha\cos\beta=\frac{\cos\left(\alpha+\beta\right)+\cos\left(\alpha-\beta\right)}{2} \\ \\ \\ 序4: 已知和差化积公式: \\ \cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \\ 设\alpha\Rightarrow\alpha+\beta, \quad \beta\Rightarrow\alpha-\beta \\ \\ \Rightarrow\sin[\frac{(\alpha+\beta)+(\alpha-\beta)}{2}]\sin[\frac{(\alpha+\beta)-(\alpha-\beta)}{2}] =\frac{\cos(\alpha+\beta)-\cos(\alpha-\beta)}{-2} \\ \\ \Rightarrow \sin\alpha\sin\beta=\frac{\cos(\alpha+\beta)-\cos(\alpha+\beta)}{-2} \\ \\ 获得公式4: \\ \sin\alpha\sin\beta=\frac{\cos(\alpha+\beta)-\cos(\alpha+\beta)}{-2} \end{align} \]Summarize
\[\begin{align} \\ \\ 公式1: \enspace \sin\alpha\cos\beta= \frac{\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)}{2} \\ \\ 公式2: \enspace \cos\alpha\sin\beta=\frac{\sin(\alpha+\beta)-\sin(\alpha-\beta)}{2} \\ \\ 公式3: \enspace \cos\alpha\cos\beta=\frac{\cos\left(\alpha+\beta\right)+\cos\left(\alpha-\beta\right)}{2} \\ \\ 公式4: \enspace \sin\alpha\sin\beta=\frac{\cos(\alpha+\beta)-\cos(\alpha+\beta)}{-2} \end{align} \]标签:cos,right,frac,三角函数,公式,beta,alpha,sin,之积化 From: https://www.cnblogs.com/Preparing/p/18183263