Solution — T24
题目描述
(本PDF为 JJL 所制)
- 如图所示,一厚壁玻璃容器放在水平面桌面上,容器底内底面积为 $50\ cm^2 $,外底面积为 $100 \ cm^2 $。将一定质量的水倒入容器中,水的深度为 \(10 \ cm\) 。求:\((p_水=1.0 \times 10^3 kg/m^3 , g \text{取} 10 N/kg)\)
(1) 水对容器底的压强
\[P = ρ_水gh_水 = 1.0 \times 10^3 kg/m^3 \times 10N/kg \times 10 \times 10^{-2} m(1 cm = 1 \times 10^{-2}m) = 1 \times 10^3 Pa \](2) 水的重力
-
解法一:
\(V_水 = Sh = 50cm^2 \times 10cm = 5 \times 10^2 cm^3 = 5 \times 10^{-4} m^3(1cm^3 = 1 \times 10^{-6}m^3)\)
\(m_水 = V_水ρ_水 = 5 \times 10^{-4} m^3 \times 1.0 \times 10^3 kg/m^3 = 5 \times 10^{-1} kg\)
\(G_水 = m_水g = 5 \times 10^{-1} kg \times 10N/kg = 5N\)
-
解法二:
\(G = F = PS = 1 \times 10^3 Pa \times 50 \times 10^{-4} m^2 (1cm^2 = 10^{-4} m^2) = 5N\)
(3) 将体积为 \(500 \ cm\) 的金属块放入水中后,金属块浸没并下沉到水底(此过程水未溢出容器),待水面静止后,水对容器底的压强的变化量与容器对桌面的压强的变化量相差 \(350\ Pa\),求金属块的密度
\(△h_水 = \frac{V_金}{S} = 500cm^3 \div 50cm^2 = 10cm\)
\(△P_水 = ρg{△h} = 1.0 \times 10^3 kg/m^3 \times 10N/kg \times 10cm = 1 \times 10^3 Pa\)
- 注意分析题目意思,来进行分类讨论:
-
\(△P_容 = △P_水 - 350 Pa = 650Pa = \frac{G_金}{S} = \frac{G_金}{100 \times 10^-4 m^2}\)
解得 \(G_金 = 6.5 N\)
\(ρ_金 = \frac{m_金}{V_金} = \frac{G_金 \div g}{V_金} = 6.5N \div 10N/kg \div(500 \times 10^{-6} m^3) = 1.3 \times 10^3 kg/m^3\)
-
\(△P_容 = △P_水 + 350 Pa = 1350Pa = \frac{G_金}{S} = \frac{G_金}{100 \times 10^-4 m^2}\)
解得 \(G_金 = 13.5 N\)
\(ρ_金 = \frac{m_金}{V_金} = \frac{G_金 \div g}{V_金} = 13.5N \div 10N/kg \div(500 \times 10^{-6} m^3) = 2.7 \times 10^3 kg/m^3\)