本人独自证明,可能存在一定疏漏.
题目:
\[m!n!(m+n)! \mid (2m)!(2n)!. \]证明:
对于每个素数 \(p\),考察式子两边的 \(p\) 进赋值,即证
\[v_p((2m)!(2n)!)\geq v_p(m!n!(m+n)!). \]根据 \(p\) 进赋值的基本性质 与 Legendre 公式,有
\[\begin{align*} v_p((2m)!(2n)!) &= v_p((2m)!) + v_p((2n)!) \\ &= \sum_{k\geq1}\lfloor\frac{2m}{p^k}\rfloor + \sum_{k\geq1}\lfloor\frac{2n}{p^k}\rfloor \\ &= \sum_{k\geq1}(\lfloor\frac{2m}{p^k}\rfloor + \lfloor\frac{2n}{p^k}\rfloor), \end{align*} \]同理,有
\[v_p(m!n!(m+n)!) = \sum_{k\geq1}(\lfloor\frac{m}{p^k}\rfloor + \lfloor\frac{n}{p^k}\rfloor + \lfloor\frac{m+n}{p^k}\rfloor). \]显然,如果对于任意 \(k \geq 1\) 都有
\[\lfloor\frac{2m}{p^k}\rfloor + \lfloor\frac{2n}{p^k}\rfloor \geq \lfloor\frac{m}{p^k}\rfloor + \lfloor\frac{n}{p^k}\rfloor + \lfloor\frac{m+n}{p^k}\rfloor, \]则原命题成立. 设 \(x =\frac{m}{p^k}, y =\frac{n}{p^k}\),则证
\[\lfloor 2x \rfloor + \lfloor 2y \rfloor \geq \lfloor x \rfloor + \lfloor y \rfloor + \lfloor x+y \rfloor, \]变形得
\[2x + 2y - \{2x\} - \{2y\} \geq 2x + 2y - \{x\} - \{y\} - \{x+y\}, \]化简得
\[\{2x\} + \{2y\} \leq \{x\} + \{y\} + \{x+y\}, \]现在我们来证明这个命题. 由于该命题对于 \(x,y\) 具有对称性,不妨设 \(\{x\} \geq \{y\}\).
若 \(\{x\} < 0.5\),则 \(\{y\} < 0.5\),左右两边相等;
若 \(\{x\} \geq 0.5, \{y\} < 0.5\) 且 \(\{x\} + \{y\} < 1\),左边比右边小 \(1\);
若 \(\{x\} \geq 0.5, \{y\} < 0.5\) 且 \(\{x\} + \{y\} \geq 1\),左右两边相等;
若 \(\{x\} \geq 0.5, \{y\} \geq 0.5\),左边比右边小 \(1\).
得证.
标签:lfloor,geq,frac,高斯,0.5,rfloor,2m,Legendre,习题 From: https://www.cnblogs.com/bpbjs/p/18164531