首页 > 其他分享 >Causal Inference理论学习篇-Tree Based-Causal Forest

Causal Inference理论学习篇-Tree Based-Causal Forest

时间:2024-04-18 23:12:22浏览次数:33  
标签:right Inference sum Tree frac theta hat Causal left

广义随机森林

了解causal forest之前,需要先了解其forest实现的载体:GENERALIZED RANDOM FORESTS[6](GRF)
其是随机森林的一种推广, 经典的随机森林只能去估计label Y,不能用于估计复杂的目标,比如causal effect,Causal Tree、Cauasl Forest的同一个作者对其进行了改良。先定义一下矩估计参数表达式:

\[\begin{equation} \tag{1} \mathbb E[\psi_{\theta(x), \upsilon(x)}(O_i)|X=x]=0 \end{equation} \]

其中,\(\psi\) 是score function,也就是measure metric,\(\theta\) 是我们不得不去计算的参数,比如tree里面的各项参数如特征threshold,叶子节点估计值..etc, \(\upsilon\)

则是一个可选参数。\(O\) 表示和计算相关的值,比如监督信号。像response类的模型,\(O_i={Y_i}\), 像causal 模型,\(O_i={Y_i, W_i}\) \(W\) 表示某种treatment。
该式在实际优化参数的时候,等价于最小化:

\[\tag{2} \left(\hat \theta(x), \upsilon(x)\right)\in argmin_{\theta, \upsilon}\left|\left|\sum\alpha_i(x)\psi_{\theta, \upsilon(O_i)}\right|\right|_2 \]

其中,\(\alpha\) 是一种权重,当然,这里也可以理解为树的权重,假设总共需要学习\(B\) 棵树:

\[\alpha_i(x)=\frac{1}{B}\sum_{b=1}^{B}\alpha_{bi}(x) \]

\[\alpha_{bi(x)}=\frac{1(\{x\in L_b(x)\})}{|L_b(x)|} \]

其中,\(L_b(x)\) 表示叶子节点里的样本。本质上,这个权重表示的是:训练样本和推理或者测试样本的相似度,因为如果某个样本\(x_i\)落入叶子\(L_b\) ,且我们可以认为叶子节点内的样本同质的情况下,那么可以认为这个样本和当前落入的tree有相似性。

当然,按照这个公式,如果\(L_b\) 很大,说明进入这个叶子的训练样本很多,意味着没划分完全,异质性低,则最后分配给这棵树的权重就低,反之亦然。

分裂准则框架

对于每棵树,父节点\(P\) 通过最优化下式进行分裂:

\[\tag{3}\left(\hat{\theta}_P, \hat{\nu}_P\right)(\mathcal{J}) \in \operatorname{argmin}_{\theta, \nu}\left\{\left\|\sum_{\left\{i \in \mathcal{J}: X_i \in P\right\}} \psi_{\theta, \nu}\left(O_i\right)\right\|_2\right\} . \]

其中,\(\mathcal{J}\) 表示train set,分裂后形成的2个子节点标准为:通过最小化估计值与真实值间的误差平方:

\[\tag{4}\operatorname{err}\left(C_1, C_2\right)=\sum_{j=1,2} \mathbb{P}\left[X \in C_j \mid X \in P\right] \mathbb{E}\left[\left(\hat{\theta}_{C_j}(\mathcal{J})-\theta(X)\right)^2 \mid X \in C_j\right] \]

等价于最大化节点间的异质性:

\[\tag{5}\Delta\left(C_1, C_2\right):=n_{C_1} n_{C_2} / n_P^2\left(\hat{\theta}_{C_1}(\mathcal{J})-\hat{\theta}_{C_2}(\mathcal{J})\right)^2 \]

但是\(\theta\) 参数比较难优化,交给梯度下降:

\[\tag{6}\tilde{\theta}_C=\hat{\theta}_P-\frac{1}{\left|\left\{i: X_i \in C\right\}\right|} \sum_{\left\{i: X_i \in C\right\}} \xi^{\top} A_P^{-1} \psi_{\hat{\theta}_P, \hat{\nu}_P}\left(O_i\right) \]

其中,\(\hat \theta_P\) 通过 (2) 式获得, \(A_p\) 为score function的梯度

\[\tag{7}A_P=\frac{1}{\left|\left\{i: X_i \in P\right\}\right|} \sum_{\left\{i: X_i \in P\right\}} \nabla \psi_{\hat{\theta}_P, \hat{\nu}_P}\left(O_i\right), \]

梯度计算部分包含2个step:

  • step1:labeling-step 得到一个pseudo-outcomes

\[\tag{8}\rho_i=-\xi^{\top} A_P^{-1} \psi_{\hat{\theta}_P, \hat{\nu}_P}\left(O_i\right) \in \mathbb{R}$. \]

  • step2:回归阶段,用这个pseudo-outcomes 作为信号,传递给split函数, 最终是最大化下式指导节点分割

\[{\Delta}\left(C_1, C_2\right)=\sum_{j=1}^2 \frac{1}{\left|\left\{i: X_i \in C_j\right\}\right|}\left(\sum_{\left\{i: X_i \in C_j\right\}} \rho_i\right)^2 \]

以下是GRF的几种Applications:

Causal Forest

以Casual-Tree为base,不做任何估计量的改变

与单棵 tree 净化到 ensemble 一样,causal forest[7] 沿用了经典bagging系的随机森林,将一颗causal tree 拓展到多棵:

\[\hat \tau=\frac{1}{B}\sum_{b=1}^{B} \hat \tau_b(x) \]

其中,每科子树\(\hat \tau\) 为一颗Casual Tree。使用随机森林作为拓展的好处之一是不需要对causal tree做任何的变换,这一点比boosing系的GBM显然成本也更低。

不过这个随机森林使用的是广义随机森林 , 经典的随机森林只能去估计label Y,不能用于估计复杂的目标,比如causal effect,Causal Tree、Cauasl Forest的同一个作者对其进行了改良,放在后面再讲。

在实现上,不考虑GRF,单机可以直接套用sklearn的forest子类,重写fit方法即可。分布式可以直接套用spark ml的forest。

self._estimator = CausalTreeRegressor(
			    control_name=control_name, 
			    criterion=criterion, 
			    groups_cnt=groups_cnt)
			    
trees = [self._make_estimator(append=False, random_state=random_state)
                for i in range(n_more_estimators)]
                
trees = Parallel(
                n_jobs=self.n_jobs,
                verbose=self.verbose,
                **_joblib_parallel_args,
            )(
                delayed(_parallel_build_trees)(
                    t,
                    self,
                    X,
                    y,
                    sample_weight,
                    i,
                    len(trees),
                    verbose=self.verbose,
                    class_weight=self.class_weight,
                    n_samples_bootstrap=n_samples_bootstrap,
                )
                for i, t in enumerate(trees)
            )

            self.estimators_.extend(trees)

CAPE:  适用连续treatment 的 causal effect预估

Conditional Average Partial Effects(CAPE)

GRF给定了一种框架:输入任意的score-function,能够指导最大化异质节点的方向持续分裂子树,和response类的模型一样,同样我们需要一些估计值(比如gini index、entropy)来计算分裂前后的score-function变化,计算估计值需要估计量,定义连续treatment的估计量为:

\[\theta(x)=\xi^{\top} \operatorname{Var}\left[W_i \mid X_i=x\right]^{-1} \operatorname{Cov}\left[W_i, Y_i \mid X_i=x\right] \]

估计量参与指导分裂计算,但最终,叶子节点存储的依然是outcome的期望。

此处的motivation来源于工具变量和线性回归:

\[y=f(x)=wx+b \]

此处我们假设\(x\)是treatment,y是outcome, \(w\) 作为一个参数简单的描述了施加treatment对结果的直接影响,要寻找到参数我们需要一个指标衡量参数好坏, 也就是loss, 和casual tree一样,通常使用mse:

\[L(w, b) = \frac{1}{2}\sum(f(x)-y)^2 \]

为了最快的找到这个w,当然是往函数梯度的方向, 我们对loss求偏导并令其为0:

\[\tag{1}\frac{\partial L}{\partial w}=\sum(f(x)-y)x=\sum(wx+b-y)x \]

\[ \tag{2} \begin{aligned} \frac{\partial L}{\partial b} & = \sum(f(x)-y)=\sum(wx+b-y) \\ & \Rightarrow \sum b= \sum y-\sum wx \\ & \Rightarrow b = E(y)-wE(x) = \bar y - w\bar x \end{aligned} \]

(2) 代入 (1) 式可得:

\[ \begin{aligned} \frac{\partial L}{\partial w} & \Rightarrow \sum(wx+\bar y-w\bar x-y)x =0 \\ &\Rightarrow w=\frac{\sum xy-\bar y\sum x}{\sum x^2-\bar x\sum x} \\ &\Rightarrow w=\frac{\sum(x-\bar x)(y-\bar y)}{\sum(x-\bar x)^2}\\ &\Rightarrow w=\frac{Cov(x,y)}{Var(x)} \end{aligned} \]

可简化得参数w是关于treatment和outcome的协方差/方差。至于\(\xi\) , 似乎影响不大。

refs

  1. https://hwcoder.top/Uplift-1
  2. 工具: scikit-uplift
  3. Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning
  4. Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.
  5. https://zhuanlan.zhihu.com/p/115223013
  6. Athey, Susan, Julie Tibshirani, and Stefan Wager. "Generalized random forests." (2019): 1148-1178.
  7. Wager, Stefan, and Susan Athey. "Estimation and inference of heterogeneous treatment effects using random forests." Journal of the American Statistical Association 113.523 (2018): 1228-1242.
  8. Rzepakowski, P., & Jaroszewicz, S. (2012). Decision trees for uplift modeling with single and multiple treatments. Knowledge and Information Systems32, 303-327.
  9. annik Rößler, Richard Guse, and Detlef Schoder. The best of two worlds: using recent advances from uplift modeling and heterogeneous treatment effects to optimize targeting policies. International Conference on Information Systems, 2022.

标签:right,Inference,sum,Tree,frac,theta,hat,Causal,left
From: https://www.cnblogs.com/zhouyc/p/18144726

相关文章

  • [ABC240E] Ranges on Tree 题解
    [ABC240E]RangesonTree题解思路解析由题意可知,只要一个点的所有儿子节点都被确定了,那么当前节点也就被确定了。也就是说,只要确定了所有叶子节点,也就能一层层地确定所有节点,而叶子节点没有儿子节点不受此条件的约束,同时我们希望\(\max\limits^N_{i=1}R_i\)最小,所以我们把所......
  • TreeComboBox 【用户控件】
    效果如下纯粹用用户控件实现缺点:1、展开子项时候,文本框会初始化为第一项,不过在选择后就会设置成选中的选择的项。          2、只有在文本框可编辑状态下,才可以正常运行。          3、设置复杂,不太容易使用。   步骤1、设置Combobox。TreeComb......
  • at_cf17final_j Tree MST 题解
    题目链接点击打开链接题目解法还是挺有收获的题解法1完全图求\(mst\),首先应该考虑\(boruvka\)算法现在的问题转化成了求\(O(\logn)\)次每个点\(x\)到不在\(x\)的连通块中的点的最短边这个可以换根\(dp\)求子树内的是好求的,只要记录所有连通块的最小值和次小值......
  • DSU on tree
    今天模拟赛T2用到了,所以来浅浅地学一下DSUontree。对于一类树上问题(大多是和路径有关的),其暴力复杂度通常会带上一个\(n^{2}\),这时利用启发式合并就可以将其优化到\(n\logn\)。具体地,假设搜索到了\(u\)结点,令\(son_{u}\)表示结点\(u\)的重儿子,那么:先对\(u\)的......
  • Causal Inference理论学习篇-Tree Based-Causal Tree
    Tree-BasedAlgorithmsTree-based这类方法,和之前meta-learning类的方法最明显的区别是:这类方法把causaleffect的计算显示的加入了到了树模型节点分裂的标准中从response时代过渡到了effect时代。大量的这类算法基本围绕着树节点分裂方式做文章,普遍采用的是兼容性比较高......
  • CF1788F XOR, Tree, and Queries
    CF1788FXOR,Tree,andQueries边权转点权+染色+构造首先对于限制,可以转化。设\(f_u\)表示\(1\)到\(u\)的异或和,那么限制\((u,v,w)\)就可以表示为\(f_u\oplusf_v=w\)。也就意味这如果我们将限制\((u,v,w)\)连边,要考虑的就变成\(f_u\)的赋值问题。这一步将边权转......
  • CF1626E Black and White Tree
    CF1626EBlackandWhiteTree换根dp树上路径行走问题,因其节点的转移不止于其子树有关,一般考虑换根dp或寻找新的转移顺序。在这题里,考虑一个以\(i\)为点的子树,判断\(i\)是否可以走到子树中某个黑点,设\(f_u\)表示\(u\)能否走到黑点,枚举儿子\(v\),有三种满足方式:\(......
  • git worktree与分支依赖隔离
    gitworktree介绍gitworktree 是Git命令,用于管理多分支工作区。使用场景:同时维护不同分支,隔离分支依赖差异:从原有项目开辟一个分支作为另一个新项目,当两个项目依赖差距越来越大时,每次切换分支后都需要重新安装依赖。通过gitworktree可以隔离两个分支的依赖,并且两个分支......
  • npm安装时一直idealTree:npm: sill idealTree buildDeps解决方案
    1.删除用户界面下的npmrc文件(注意一定是用户C:\Users\{账户}\下的.npmrc文件下不是nodejs里面)2.清除缓存,注意不要用npmcacheclean--force,容易出现npmWARNusing--forceIsurehopeyouknowwhatyouaredoing.要用:npmcacheverify3.设置镜像源:npmconfigsetregis......
  • Avalonia下拉可搜索树(TreeComboBox)
    1.需求分析  树形下拉的功能是ComboBox和TreeView的功能结合起来,再结合数据模板来实现这一功能。2.代码实现 1.创建UserControl集成TreeView控件`publicclassTreeComboBox:TreeView{privatebool_isPushTextChangedEvent=true;privateButtonClearButton;pri......