线性方程组:A \(\vec{x}\) = \(\vec{v}\) 秩:线性变换后空间的维数。 对于形状为(3,2)的矩阵,列空间是三维中一个过原点的平面(但是确是满秩的)。其几何意义是将二维空间映射至三维空间。 点积:两个向量投影到一条线上的长度之积06-逆矩阵、列空间、秩与零空间
线性代数的一个作用:帮助我们处理线性方程组。
形式:矩阵与向量的乘法。
几何意义:寻找一个向量\(\vec{x}\) ,这个向量在特定的线性变换之后与目标向量\(\vec{v}\)重合。
如何找到这个向量:使用逆向变换(\(A^{-1}\))来寻找。
所有变换后向量的集合称为列空间。因为他们都是由矩阵的列张成的空间。因此,列空间的维数既是秩。秩=列数:满秩。
变换后落在原点的向量的 集合,称为矩阵的零空间或者核。附注2-非方阵 不同维度空间之间的线性变换
07-点积与对偶性
为什么点积可以看作投影:此部分过于精彩,并且推理过程用文字表述较为繁琐,直接看原文。