什么是动态规划?
动态规划(英语:Dynamic programming,简称 DP),是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题。
以上定义来自维基百科,看定义感觉还是有点抽象。简单来说,动态规划其实就是,给定一个问题,我们把它拆成一个个子问题,直到子问题可以直接解决。然后呢,把子问题答案保存起来,以减少重复计算。再根据子问题答案反推,得出原问题解的一种方法。
动态规划核心思想
动态规划最核心的思想,就在于拆分子问题,记住过往,减少重复计算。
我们来看下,网上比较流行的一个例子:
- A : "1+1+1+1+1+1+1+1 =?"
- A : "上面等式的值是多少"
- B : 计算 "8"
- A : 在上面等式的左边写上 "1+" 呢?
- A : "此时等式的值为多少"
- B : 很快得出答案 "9"
- A : "你怎么这么快就知道答案了"
- A : "只要在8的基础上加1就行了"
- A : "所以你不用重新计算,因为你记住了第一个等式的值为8!动态规划算法也可以说是 '记住求过的解来节省时间'"
一个例子带你走进动态规划 -- 青蛙跳阶问题
暴力递归
leetcode原题:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 10 级的台阶总共有多少种跳法。
”
有些小伙伴第一次见这个题的时候,可能会有点蒙圈,不知道怎么解决。其实可以试想:
- 要想跳到第10级台阶,要么是先跳到第9级,然后再跳1级台阶上去;要么是先跳到第8级,然后一次迈2级台阶上去。
- 同理,要想跳到第9级台阶,要么是先跳到第8级,然后再跳1级台阶上去;要么是先跳到第7级,然后一次迈2级台阶上去。
- 要想跳到第8级台阶,要么是先跳到第7级,然后再跳1级台阶上去;要么是先跳到第6级,然后一次迈2级台阶上去。
假设跳到第n级台阶的跳数我们定义为f(n),很显然就可以得出以下公式:
f(10) = f(9)+f(8)
f (9) = f(8) + f(7)
f (8) = f(7) + f(6)
...
f(3) = f(2) + f(1)
即通用公式为: f(n) = f(n-1) + f(n-2)
那f(2) 或者 f(1) 等于多少呢?
- 当只有2级台阶时,有两种跳法,第一种是直接跳两级,第二种是先跳一级,然后再跳一级。即f(2) = 2;
- 当只有1级台阶时,只有一种跳法,即f(1)= 1;
因此可以用递归去解决这个问题:
class Solution {
public int numWays(int n) {
if(n == 1){
return 1;
}
if(n == 2){
return 2;
}
return numWays(n-1) + numWays(n-2);
}
}
提交一下,发现有问题,超出时间限制了
因此,青蛙跳阶,递归解法的时间复杂度 = O(1) * O(2^n) = O(2^n),就是指数级别的,爆炸增长的,如果n比较大的话,超时很正常的了。
回过头来,你仔细观察这颗递归树,你会发现存在大量重复计算,比如f(8)被计算了两次,f(7)被重复计算了3次...所以这个递归算法低效的原因,就是存在大量的重复计算!
既然存在大量重复计算,那么我们可以先把计算好的答案存下来,即造一个备忘录,等到下次需要的话,先去备忘录查一下,如果有,就直接取就好了,备忘录没有才开始计算,那就可以省去重新重复计算的耗时啦!这就是带备忘录的解法。
带备忘录的递归解法(自顶向下)
一般使用一个数组或者一个哈希map充当这个备忘录。
动态规划有几个典型特征,最优子结构、状态转移方程、边界、重叠子问题。在青蛙跳阶问题中:
我们来看下自底向上的解法,从f(1)往f(10)方向
- 要计算原问题 f(10),就需要先计算出子问题 f(9) 和 f(8)
- 然后要计算 f(9),又要先算出子问题 f(8) 和 f(7),以此类推。
- 一直到 f(2) 和 f(1),递归树才终止。
我们先来看看这个递归的时间复杂度吧:
递归时间复杂度 = 解决一个子问题时间*子问题个数
- 一个子问题时间 = f(n-1)+f(n-2),也就是一个加法的操作,所以复杂度是 O(1);
- 问题个数 = 递归树节点的总数,递归树的总节点 = 2^n-1,所以是复杂度O(2^n)。
- 第一步,f(10)= f(9) + f(8),f(9) 和f(8)都需要计算出来=
- 第二步, f(9) = f(8)+ f(7),f(8)= f(7)+ f(6), 因为 f(8) 已经在啦,所以可以省掉,f(7),f(6)都需要计算出来
- 第三步, f(8) = f(7)+ f(6),发现f(8),f(7),f(6)全部都在了
-
其实,还可以用动态规划解决这道题。
自底向上的动态规划
动态规划跟带备忘录的递归解法基本思想是一致的,都是减少重复计算,时间复杂度也都是差不多。但是呢:
- 带备忘录的递归,是从f(10)往f(1)方向延伸求解的,所以也称为自顶向下的解法。
- 动态规划从较小问题的解,由交叠性质,逐步决策出较大问题的解,它是从f(1)往f(10)方向,往上推求解,所以称为自底向上的解法。
- f(n-1)和f(n-2) 称为 f(n) 的最优子结构
- f(n)= f(n-1)+f(n-2)就称为状态转移方程
- f(1) = 1, f(2) = 2 就是边界啦
- 比如f(10)= f(9)+f(8),f(9) = f(8) + f(7) ,f(8)就是重叠子问题。
代码实现
我们实现代码的时候,一般注意从底往上遍历哈,然后关注下边界情况,空间复杂度,也就差不多啦。动态规划有个框架的,大家实现的时候,可以考虑适当参考一下:
dp[0][0][...] = 边界值
for(状态1 :所有状态1的值){
for(状态2 :所有状态2的值){
for(...){
//状态转移方程
dp[状态1][状态2][...] = 求最值
}
}
}
标签:10,台阶,递归,问题,计算,动态,规划,Dp From: https://blog.csdn.net/back_room/article/details/137609199