首页 > 编程语言 >【TensorRT】TensorRT C# API 项目更新 (1):支持动态Bath输入模型推理(下篇)

【TensorRT】TensorRT C# API 项目更新 (1):支持动态Bath输入模型推理(下篇)

时间:2024-04-10 16:31:24浏览次数:35  
标签:INFO index C# TensorRT Bath score result ms new

4. 接口应用

关于该项目的调用方式在上一篇文章中已经进行了详细介绍,具体使用可以参考《最新发布!TensorRT C# API :基于C#与TensorRT部署深度学习模型》,下面结合Yolov8-cls模型详细介绍一下更新的接口使用方法。

4.1 创建并配置C#项目

  首先创建一个简单的C#项目,然后添加项目配置。

  首先是添加TensorRT C# API 项目引用,如下图所示,添加上文中C#项目生成的dll文件即可。

  接下来添加OpenCvSharp,此处通过NuGet Package安装即可,此处主要安装以下两个程序包即可:

  配置好项目后,项目的配置文件如下所示:

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net6.0</TargetFramework>
    <RootNamespace>TensorRT_CSharp_API_demo</RootNamespace>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="OpenCvSharp4.Extensions" Version="4.9.0.20240103" />
    <PackageReference Include="OpenCvSharp4.Windows" Version="4.9.0.20240103" />
  </ItemGroup>

  <ItemGroup>
    <Reference Include="TensorRtSharp">
      <HintPath>E:\GitSpace\TensorRT-CSharp-API\src\TensorRtSharp\bin\Release\net6.0\TensorRtSharp.dll</HintPath>
    </Reference>
  </ItemGroup>

</Project>

4.2 添加推理代码

  此处演示一个简单的图像分类项目,以Yolov8-cls项目为例:

(1) 转换engine模型

动态输入的模型在进行格式转换时,需要指定模型推理形状至此的范围,minShapes表示模型推理支持的最小形状,optShapes表示模型推理支持的最佳形状,maxShapes表示模型推理支持的最大形状,模型转换需要消耗较多时间,最终转换成功后会在模型同级目录下生成相同名字的.engine文件。

Dims minShapes = new Dims(1, 3, 224, 224);
Dims optShapes = new Dims(10, 3, 224, 224);
Dims maxShapes = new Dims(20, 3, 224, 224);
Nvinfer.OnnxToEngine(onnxPath, 20, "images", minShapes, optShapes, maxShapes);
(2) 定义模型预测方法

下面代码是定义的Yolov8-cls模型的预测方法,该方法支持动态Bath输入模型推理,可以根据用户输入图片数量,自动设置输入Bath,然后进行推理。

下面代码与上一篇文章中的代码差异主要是增加了predictor.SetBindingDimensions("images", new Dims(batchNum, 3, 224, 224));这一句代码。同时在初始化时,设置最大支持20Bath,这与上文模型转换时设置的一致。

public class Yolov8Cls
{
    public Dims InputDims;
    public int BatchNum;
    private Nvinfer predictor;
    public Yolov8Cls(string enginePath)
    {
        predictor = new Nvinfer(enginePath, 20);
        InputDims = predictor.GetBindingDimensions("images");
    }
    public void Predict(List<Mat> images)
    {
        BatchNum = images.Count;
        for (int begImgNo = 0; begImgNo < images.Count; begImgNo += BatchNum)
        {
            DateTime start = DateTime.Now;
            int endImgNo = Math.Min(images.Count, begImgNo + BatchNum);
            int batchNum = endImgNo - begImgNo;
            List<Mat> normImgBatch = new List<Mat>();
            int imageLen = 3 * 224 * 224;
            float[] inputData = new float[BatchNum * imageLen];
            for (int ino = begImgNo; ino < endImgNo; ino++)
            {
                Mat input_mat = CvDnn.BlobFromImage(images[ino], 1.0 / 255.0, new OpenCvSharp.Size(224, 224), 0, true, false);
                float[] data = new float[imageLen];
                Marshal.Copy(input_mat.Ptr(0), data, 0, imageLen);
                Array.Copy(data, 0, inputData, ino * imageLen, imageLen);
            }
            predictor.SetBindingDimensions("images", new Dims(batchNum, 3, 224, 224));
            predictor.LoadInferenceData("images", inputData);
            DateTime end = DateTime.Now;
            Console.WriteLine("[ INFO ] Input image data processing time: " + (end - start).TotalMilliseconds + " ms.");
            predictor.infer();
            start = DateTime.Now;
            predictor.infer();
            end = DateTime.Now;
            Console.WriteLine("[ INFO ] Model inference time: " + (end - start).TotalMilliseconds + " ms.");
            start = DateTime.Now;

            float[] outputData = predictor.GetInferenceResult("output0");
            for (int i = 0; i < batchNum; ++i)
            {
                Console.WriteLine(string.Format("[ INFO ] Classification Top {0} result : ", 2));
                float[] data = new float[1000];
                Array.Copy(outputData, i * 1000, data, 0, 1000);
                List<int> sortResult = Argsort(new List<float>(data));
                for (int j = 0; j < 2; ++j)
                {
                    string msg = "";
                    msg += ("index: " + sortResult[j] + "\t");
                    msg += ("score: " + data[sortResult[j]] + "\t");
                    Console.WriteLine("[ INFO ] " + msg);
                }
            }
            end = DateTime.Now;
            Console.WriteLine("[ INFO ] Inference result processing time: " + (end - start).TotalMilliseconds + " ms.\n");
        }
    }
    public static List<int> Argsort(List<float> array)
    {
        int arrayLen = array.Count;
        List<float[]> newArray = new List<float[]> { };
        for (int i = 0; i < arrayLen; i++)
        {
            newArray.Add(new float[] { array[i], i });
        }
        newArray.Sort((a, b) => b[0].CompareTo(a[0]));
        List<int> arrayIndex = new List<int>();
        foreach (float[] item in newArray)
        {
            arrayIndex.Add((int)item[1]);
        }
        return arrayIndex;
    }
}
(3) 预测方法调用

下面是上述定义的预测方法,为了测试不同Bath性能,此处读取了多张图片,并分别预测不同张数图片,如下所示:

Yolov8Cls yolov8Cls = new Yolov8Cls("E:\\Model\\yolov8\\yolov8s-cls_b.engine");
Mat image1 = Cv2.ImRead("E:\\ModelData\\image\\demo_4.jpg");
Mat image2 = Cv2.ImRead("E:\\ModelData\\image\\demo_5.jpg");
Mat image3 = Cv2.ImRead("E:\\ModelData\\image\\demo_6.jpg");
Mat image4 = Cv2.ImRead("E:\\ModelData\\image\\demo_7.jpg");
Mat image5 = Cv2.ImRead("E:\\ModelData\\image\\demo_8.jpg");

yolov8Cls.Predict(new List<Mat> { image1, image2 });

yolov8Cls.Predict(new List<Mat> { image1, image2, image3 });

yolov8Cls.Predict(new List<Mat> { image1, image2, image3, image4 });

yolov8Cls.Predict(new List<Mat> { image1, image2, image3, image4, image5 });

4.3 项目演示

  配置好项目并编写好代码后,运行该项目,项目输出如下所示:

[ INFO ] Input image data processing time: 5.5277 ms.
[ INFO ] Model inference time: 1.3685 ms.
[ INFO ] Classification Top 2 result :
[ INFO ] index: 386     score: 0.8754883
[ INFO ] index: 385     score: 0.08013916
[ INFO ] Classification Top 2 result :
[ INFO ] index: 293     score: 0.89160156
[ INFO ] index: 276     score: 0.05480957
[ INFO ] Inference result processing time: 3.0823 ms.

[ INFO ] Input image data processing time: 2.7356 ms.
[ INFO ] Model inference time: 1.4435 ms.
[ INFO ] Classification Top 2 result :
[ INFO ] index: 386     score: 0.8754883
[ INFO ] index: 385     score: 0.08013916
[ INFO ] Classification Top 2 result :
[ INFO ] index: 293     score: 0.89160156
[ INFO ] index: 276     score: 0.05480957
[ INFO ] Classification Top 2 result :
[ INFO ] index: 14      score: 0.99853516
[ INFO ] index: 88      score: 0.0006980896
[ INFO ] Inference result processing time: 1.5137 ms.

[ INFO ] Input image data processing time: 3.7277 ms.
[ INFO ] Model inference time: 1.5285 ms.
[ INFO ] Classification Top 2 result :
[ INFO ] index: 386     score: 0.8754883
[ INFO ] index: 385     score: 0.08013916
[ INFO ] Classification Top 2 result :
[ INFO ] index: 293     score: 0.89160156
[ INFO ] index: 276     score: 0.05480957
[ INFO ] Classification Top 2 result :
[ INFO ] index: 14      score: 0.99853516
[ INFO ] index: 88      score: 0.0006980896
[ INFO ] Classification Top 2 result :
[ INFO ] index: 294     score: 0.96533203
[ INFO ] index: 269     score: 0.0124435425
[ INFO ] Inference result processing time: 2.7328 ms.

[ INFO ] Input image data processing time: 4.063 ms.
[ INFO ] Model inference time: 1.6947 ms.
[ INFO ] Classification Top 2 result :
[ INFO ] index: 386     score: 0.8754883
[ INFO ] index: 385     score: 0.08013916
[ INFO ] Classification Top 2 result :
[ INFO ] index: 293     score: 0.89160156
[ INFO ] index: 276     score: 0.05480957
[ INFO ] Classification Top 2 result :
[ INFO ] index: 14      score: 0.99853516
[ INFO ] index: 88      score: 0.0006980896
[ INFO ] Classification Top 2 result :
[ INFO ] index: 294     score: 0.96533203
[ INFO ] index: 269     score: 0.0124435425
[ INFO ] Classification Top 2 result :
[ INFO ] index: 127     score: 0.9008789
[ INFO ] index: 128     score: 0.07745361
[ INFO ] Inference result processing time: 3.5664 ms.

  通过上面输出可以看出,不同Bath模型推理时间在1.3685~1.6947ms,大大提升了模型的推理速度。

5. 总结

  在本项目中,我们扩展了TensorRT C# API 接口,使其支持动态输入模型。并结合分类模型部署流程向大家展示了TensorRT C# API 的使用方式,方便大家快速上手使用。

  为了方便各位开发者使用,此处开发了配套的演示项目,主要是基于Yolov8开发的目标检测、目标分割、人体关键点识别、图像分类以及旋转目标识别,并且支持动态输入模型,用户可以同时推理任意张图像。

  • Yolov8 Det 目标检测项目源码:
https://github.com/guojin-yan/TensorRT-CSharp-API-Samples/blob/master/model_samples/yolov8_custom_dynamic/Yolov8Det.cs
  • Yolov8 Seg 目标分割项目源码:
https://github.com/guojin-yan/TensorRT-CSharp-API-Samples/blob/master/model_samples/yolov8_custom_dynamic/Yolov8Seg.cs
  • Yolov8 Pose 人体关键点识别项目源码:
https://github.com/guojin-yan/TensorRT-CSharp-API-Samples/blob/master/model_samples/yolov8_custom_dynamic/Yolov8Pose.cs
  • Yolov8 Cls 图像分类项目源码:
https://github.com/guojin-yan/TensorRT-CSharp-API-Samples/blob/master/model_samples/yolov8_custom_dynamic/Yolov8Cls.cs
  • Yolov8 Obb 旋转目标识别项目源码:
https://github.com/guojin-yan/TensorRT-CSharp-API-Samples/blob/master/model_samples/yolov8_custom_dynamic/Yolov8Obb.cs

  同时对本项目开发的案例进行了时间测试,以下时间只是程序运行一次的时间,测试环境为:

  • CPU:i7-165G7

  • CUDA型号:12.2

  • Cudnn:8.9.3

  • TensorRT:8.6.1.6

ModelBatch数据预处理 (ms)模型推理 (ms)结果后处理 (ms)
Yolov8s-Det116.64.613.1
438.012.432.4
870.523.080.1
Yolov8s-Obb128.78.917.7
481.725.967.4
8148.444.6153.0
Yolov8s-Seg115.45.467.4
437.315.5220.6
878.726.9433.6
Yolov8s-Pose115.15.28.7
439.213.214.3
867.823.127.7
Yolov8s-Cls19.91.31.9
414.71.52.3
822.62.02.9

  最后如果各位开发者在使用中有任何问题,欢迎大家与我联系。

标签:INFO,index,C#,TensorRT,Bath,score,result,ms,new
From: https://blog.csdn.net/grape_yan/article/details/137557203

相关文章

  • 停产的博通HBA不受自带工具storcli 待见怎么办HBA-94xxx,HBA-93xx, HBA-92xx给硬盘扩
    针对一些老旧版本的博通服务器直通卡HBA,没有自带工具,或者自带升级工具storcli很多功能不适用?到处搜集信息搞定手里的HBA-940x,完美的把它更新到最新的固件版本上,意外的还有很多读取HBA基本信息,查看HBA当前状态,甚至开放了一些HBA参数调节,状态刷新的便捷命令,这当然是HBA的亲生父母......
  • objectarx中,修改标注数据之后无效的解决方法
    最近在写objectarx的标注,发现同样的代码,有些标注可以修改成功,但是有些修改之后无效。但是修改颜色之类的可以起效果。能修改成功的标注都是自定义的标注,用默认的标注修改之后就无效,并且返回值也都是eok。修改之后立马去查看标注的顶点数据,发现是修改之后的。但是在等到把对象关闭......
  • cap定理
    CAP原则又称CAP定理,指的是在一个分布式系统中,一致性(Consistency)、可用性(Availability)、分区容错性(Partitiontolerance)。CAP原则指的是,这三个要素最多只能同时实现两点,不可能三者兼顾。也被称为Brewer定理,是分布式计算中的一个重要概念。它阐述了在分布式系统中,一致性(Consis......
  • centos7中ffmpeg的安装方法
    Linux系统安装ffmpeg&升级ffmpeg一、介绍多媒体视频处理工具FFmpeg有非常强大的功能,包括视频采集功能、视频格式转换、视频抓图、给视频加水印等。由于最近要处理音视频格式转换问题,因此需要安装、升级ffmpeg,下面来记录一下踩坑过程。 二、安装ffmpeg1、下载并解压ffmpeg......
  • Oracle分析函数- count()/sum() over(partition by 分组 order by 排序) 详解
    优点:代码简单明了,并且执行效率高,(不影响总的记录数)如果不用这种函数去写,按照平时我们的思路首先想到的可能是子查询,那么将至少会走4次以上的全表扫描:(1)每个订单中产品数量大于3的产品至少1个(003,004)(2)每个订单中折扣标志为'1'的产品至少有2个(002,004)(3)每个订单......
  • RocketMQ---消息存储
    概述RocketMQ的消息存储在本地文件系统中,默认路径:$home/store下;abort 该文件在broker启动后自动创建,正常关闭broker,该文件会消失;若在未启动broker的情况下,发现该文件存在,说明broker的关闭是非正常关闭;checkpoint存储commit......
  • 有效提升Halcon二次开发调试效率的插件 HalconAssit
    HalconAssit开发背景:大家好,我是HalconAssit得作者。首先得解释下开发这款工具的得原因。作为视觉工程师,可以说Halcon大家应该或多或少都接触过。功能非常强大,算子非常全,开发的自由度也非常高,但是唯一的得缺点应该是GUI支持这块稍显欠缺。在我也c#做halcon二次开发的时候,发现......
  • jmeter监控服务器工具jp@gc - PerfMon Metrics Collector(ServerAgent)
    一、在服务器上安装ServerAgentSeverAgent:这个工具,可以和jmeter集成,在jmeter的GUI界面可以看到数据。链接:https://pan.baidu.com/s/1k3xlXk35YfPmS17-2ZFBnA?pwd=5s4n提取码:5s4n复制这段内容后打开百度网盘手机App,操作更方便哦使用unzip命令解压文件......
  • try-with-resource的使用
    try-with-resources支持从Java7开始的所有后续版本。只有实现了AutoCloseable或Closeable接口的资源才能用于try-with-resources。可以在括号内声明多个资源,用分号分隔。如果try块中抛出了异常,并且close()方法也抛出了异常,那么抛出的异常将是try块中的异常......
  • nodejs + ts + nodemon + webpack 代码热更新
    依赖:npminodemonwebpackwebpack-clits-loadertypescript//webpack.config.jsimport{defaultaswebpack}from"webpack";importnodeExternalsfrom"webpack-node-externals";constplugins=[newCleanWebpackPlugin({dangero......