简单的参变分离
已知函数$ f(x)=\dfrac{\ln x}{x^2}$
(1)讨论\(f(x)\)的最值;
(2)若函数\(g(x)=e^x+x^4f(x)-x^2-ax\)有两个零点,求\(a\)的范围
解
(1)\(f(x)=\dfrac{1-2\ln x}{x^3}\)
得\(f^{\prime}\left(\sqrt{e}\right)=0\)
则\(f(x)\)在\(\left(0,\sqrt{e}\right)\)上增,在\(\left(\sqrt{e},+\infty\right)\)上减
从而\(f(x)_{\max}=f(\sqrt{e})=\dfrac{1}{2e}\)
(2)\(g(x)=e^x+x^2\ln x-x^2-ax=e^x-ax+x^2(\ln x-1)=0\)
即\(a=\dfrac{e^x}{x}+x(\ln x-1)\)
记\(\varphi(x)=\dfrac{e^x}{x}+x(\ln x-1),\varphi^{\prime}(x)=\dfrac{e^x(x-1)}{x^2}+\ln x\)
不难发现\(0<x<1\)时,\(\varphi^{\prime}(x)<0,x>0\varphi^{\prime}(x)>0,x=1,\varphi^{\prime}(1)=0\)
则\(\varphi(x)\)在\((0,1)\)上减,在\((1,+\infty)\)上增,\(\varphi(x)_{\min}=\varphi(1)=e+1\)
则使得\(y=a\)与\(y=\varphi(x)\)有两个交点,要有\(a>e+1\)
标签:prime,right,导数,ln,dfrac,每日,varphi,sqrt,85 From: https://www.cnblogs.com/manxinwu/p/18074413