首页 > 其他分享 >LangChain的Agent使用介绍

LangChain的Agent使用介绍

时间:2024-03-13 11:44:18浏览次数:26  
标签:LangChain 模型 Agent 介绍 value action input 工具

LangChain 介绍

随着各种开源大模型的发布,越来越多的人开始尝试接触和使用大模型。在感叹大模型带来的惊人表现的同时,也发现一些问题,比如没法查询到最新的信息,有时候问一些数学问题时候,会出现错误答案,还有一些专业领域类问题甚至编造回答等等。有没有什么办法能解决这些问题呢?答案就是LangChain。

LangChain 是一个开源的语言模型集成框架,旨在简化使用大型语言模型(LLM)创建应用程序的过程。利用它可以让开发者使用语言模型来实现各种复杂的任务,例如文本到图像的生成、文档问答、聊天机器人、调用特定的SaaS服务等等。随着ChatGPT、midjourney等AI技术的爆火,LangChain也是在短时间内得到6w+的star数,版本迭代也是异常的快,社区十分活跃。

LangChain 在没有任何收入也没有任何明显的创收计划的情况下,获得了 1000 万美元的种子轮融资和 2000-2500 万美元的 A 轮融资,估值达到 2 亿美元左右。

  LangChain架构图

上面是LangChain的核心架构图,可以看到LangChain主要包含如下模块:

  • Model I/O:大模型的输入输出,包含提示词、任何大模型、结果解析器。
  • Retrieval:涉及到数据集相关,主要包含文档提取器、文档转换器、向量数据库等。
  • Chains:允许将多个不同组件组合在一起使用,形成链条式调用。
  • Memory:在大模型调用期间提供存储能力。
  • Agents:链式调用是硬编码的,而代理是由大模型根据实时情况来决定如何调用工具。
  • Callbacks:大模型各个阶段的的回调系统,对于日志记录、监控、流传输和其他任务非常有用。

Agent

大模型一般只拥有他们被训练的知识,这种知识可能很快就会过时了,所以在推理的时候大模型与外界是处于“断开”状态。为了克服这一限制,LangChain在Yao等人在2022年11月提出的推理和行动(ReAct)框架上提出了“代理”(Agent)的解决方案。此方案可以获取最新的数据,并将其作为上下文插入到提示中。Agent也可以用来采取行动(例如,运行代码,修改文件等),然后该行动的结果可以被LLM观察到,并被纳入他们关于下一步行动的决定。

运行大体流程: 1用户给出一个任务(Prompt) -> 2思考(Thought) -> 3行动(Action) -> 4观察(Observation)
然后循环执行上述 2-4 的流程,直到大模型认为找到最终答案为止。

Agent内部具体拆解:


  Agent结构图

使用Agent有两个必备条件:相关能力工具和对这些工具的正确描述。

定义工具

工具的定义只需要集成BaseTool类,然后在_run方法中编写你的逻辑就行,大模型会把合适的参数传进来。
需要定义类变量有:

  • name: 工具名称,很重要,大模型内部会使用到
  • description:工具描述,很重要,告知大模型在什么情况下来使用这个工具
  • return_direct:这个字段默认为false,如果设置为true,工具返回结果后,大模型就不再循环思考了会直接将这个结果当做答案。

LangChain 已经内置了 duckduckgo 搜索引擎,pip install duckduckgo-search安装一下依赖包即可使用,只是需要kx上网才能调通。

下面是我定义的两个工具,一个用于电影搜索,一个用于数学计算:

from langchain.tools import BaseTool, DuckDuckGoSearchRun

# 搜索工具
class SearchTool(BaseTool):
    name = "Search"
    description = "当问电影相关问题时候,使用这个工具"
    return_direct = False  # 直接返回结果

    def _run(self, query: str) -> str:
        print("\n正在调用搜索引擎执行查询: " + query)
        search = DuckDuckGoSearchRun()
        return search.run(query)

# 计算工具
class CalculatorTool(BaseTool):
    name = "Calculator"
    description = "如果问数学相关问题时,使用这个工具"
    return_direct = False  # 直接返回结果

    def _run(self, query: str) -> str:
        return eval(query)

定义结果解析类

每次大模型输出之后,都会对结果进行解析,如果找到action就会去调用。但是默认的解析类我测试的时候总报错,所以我改写了一下:

from typing import Dict, Union, Any, List

from langchain.output_parsers.json import parse_json_markdown
from langchain.agents.conversational_chat.prompt import FORMAT_INSTRUCTIONS
from langchain.agents import AgentExecutor, AgentOutputParser
from langchain.schema import AgentAction, AgentFinish

# 自定义解析类
class CustomOutputParser(AgentOutputParser):

    def get_format_instructions(self) -> str:
        return FORMAT_INSTRUCTIONS

    def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
        print(text)
        cleaned_output = text.strip()
        # 定义匹配正则
        action_pattern = r'"action":\s*"([^"]*)"'
        action_input_pattern = r'"action_input":\s*"([^"]*)"'
        # 提取出匹配到的action值
        action = re.search(action_pattern, cleaned_output)
        action_input = re.search(action_input_pattern, cleaned_output)
        if action:
            action_value = action.group(1)
        if action_input:
            action_input_value = action_input.group(1)
        
        # 如果遇到'Final Answer',则判断为本次提问的最终答案了
        if action_value and action_input_value:
            if action_value == "Final Answer":
                return AgentFinish({"output": action_input_value}, text)
            else:
                return AgentAction(action_value, action_input_value, text)

        # 如果声明的正则未匹配到,则用json格式进行匹配
        response = parse_json_markdown(text)
        
        action_value = response["action"]
        action_input_value = response["action_input"]
        if action_value == "Final Answer":
            return AgentFinish({"output": action_input_value}, text)
        else:
            return AgentAction(action_value, action_input_value, text)
output_parser = CustomOutputParser()

初始化Agent

如果你使用ChatGPT的话,这里需要配置ChatGPT的api-key,同时需要kx上网。也可以配置一些本地的开源大模型,比如ChatGLM2-6BBaichuan-13B等,但是效果确实要比ChatGPT差很多。

from langchain.memory import ConversationBufferMemory
from langchain.agents.conversational_chat.base import ConversationalChatAgent 
from langchain.agents import AgentExecutor, AgentOutputParser

SYSTEM_MESSAGE_PREFIX = """尽可能用中文回答以下问题。您可以使用以下工具"""

# 初始化大模型实例,可以是本地部署的,也可是是ChatGPT
# llm = ChatGLM(endpoint_url="http://你本地的实例地址")
llm = ChatOpenAI(openai_api_key="sk-xxx", model_name='gpt-3.5-turbo', request_timeout=60)
# 初始化工具
tools = [CalculatorTool(), SearchTool()]
# 初始化对话存储,保存上下文
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
# 配置agent
chat_agent = ConversationalChatAgent.from_llm_and_tools(
    system_message=SYSTEM_MESSAGE_PREFIX, # 指定提示词前缀
    llm=llm, tools=tools, memory=memory, 
    verbose=True, # 是否打印调试日志,方便查看每个环节执行情况
    output_parser=output_parser # 
)
agent = AgentExecutor.from_agent_and_tools(
    agent=chat_agent, tools=tools, memory=memory, verbose=True,
    max_iterations=3 # 设置大模型循环最大次数,防止无限循环
)

调用Agent

调用就很简单了,执行agent.run(prompt)即可,下面是一个详细的调用日志输出:

  执行结果

日志已经完整的体现出了整个流程,大模型的确每次都匹配到了正确的tool。如果还觉得日志不详细,可以设置langchain.debug = True,这样会打印更详细日志。

总结

可以这么理解Agent,它让大模型变成了一个决策者。用户的问题首先由它去理解和拆分,它来从工具列表中找到觉得合适的工具,然后将用户的提问信息转化成结构化的数据,当成参数传递给工具函数。工具函数返回结果又交还给了大模型去观察分析,如果它觉得不是正确答案,那么继续这个循环直到得出它认为的正确答案。

它就像是一个优秀的项目经理,分解用户的问题,可能他不擅长完成某一项任务,但是他能找到合适专业的外部的人去完成子任务,最后他再汇总任务结果交付给用户。

优点

  • 框架层上来说,对大模型的有更系统化的干预机制,方便集成。
  • 拓展了大模型更多的能力,而且是不需要经过复杂且昂贵的训练过程。
  • 不用再去写那些匹配场景的规则了,大模型已经帮你做了,前提是这个模型参数要够大,能理解用户的意思。
  • 整个流程都有详细的记录日志,方便调试。

不足

  • 大模型会被多次调用,响应用户的时间可能会比较久,因此相应产品也就会限制在一些特定领域。
  • 虽然不用写工具匹配规则,但是这也让这一块逻辑变成一个黑盒了,很难去精准的匹配或者调试。
  • 对大模型本身能力要求很高,如果使用低参数大模型,很有可能无法识别问题并正确的分发给对应工具。

当然还是有优化的方向的:比如可以考虑去使用语料专门往解析action方面训练,让模型能更好的解析出action。

引用链接:

  1. Introduction |

    标签:
    LangChain,模型,Agent,介绍,value,action,input,工具
    From: https://www.cnblogs.com/gaoyanbing/p/18070299

相关文章

  • JS 监听浏览器各个标签间的切换-visibilitychange事件介绍
    文章目录一、JS监听浏览器各个标签间的切换二、document的可见性属性三、示例:监听标签,控制视频播放与暂停一、JS监听浏览器各个标签间的切换以前看到过一些网页,在标签切换到其它地址时,网页上的标题上会发生变化,一直不知道这个是怎么做的,最近查了一些资料才发现......
  • Flask框架基础介绍
    Flask是一个轻量级的PythonWeb应用框架,它简单而灵活,适用于快速开发Web应用程序。Flask基于WerkzeugWSGI工具箱和Jinja2模板引擎构建,提供了简单易用的方式来构建Web应用程序和RESTfulAPI。以下为Flask框架的基础知识和常用用法。1、安装Flask在开始之前,首......
  • Locust 介绍与特性
    一Locust的介绍现在不管是互联网行业还是传统行业,对性能的要求,都日渐增多,为了能更快更准确的定位问题,发现问题,以及解决问题,市面上出现了越来越多的性能测试工具,例如Jmeter,LoadRunner,Locus,而今天,我们主要介绍就是Locust,locust官网如下:https://www.locust.io简介:先从`......
  • 【C++】string类(介绍、常用接口)
    ......
  • 12VMWare虚拟机设置页介绍
    VMWare虚拟机设置页介绍我们可以对VM里安装的虚拟机进行个性化设置,向其中添加,修改,删除硬件.点击菜单栏上的虚拟机(M),点击设置(S).内存内存越大,虚拟机运行速度越快.但是需要量力而行,相应的,虚拟机获得的内存越大,你的物理机所剩内存越小.处理器不用进行设置.硬盘......
  • UI自动化测试介绍及入门
    为了让对自动化技术感兴趣的朋友们有真实案例的支持,今天我们给大家带来一期适合新手的UI自动化测试介绍。我们的目标是让大家能够轻松理解UI自动化测试的概念,并且能够亲自动手去实践。通过这个介绍,大家能够对UI自动化测试有一个整体的理解,并且能够自己动手去做。项目的选取:虽然U......
  • 探索Flutter中的模糊毛玻璃滤镜效果:ImageFilter介绍使用和深入解析
    在Flutter中,模糊效果不仅可以增加应用的视觉吸引力,还可以用于多种场景,如背景模糊、图像处理等。通过BackdropFilter和ImageFilter.blur,Flutter使得添加和调整模糊效果变得异常简单。本文将深入探讨如何在Flutter中实现动态模糊效果,并通过TileMode参数调整模糊效果的边缘行为......
  • 深入理解 Nginx:原理和基础介绍
    简介Nginx(发音为"engine-x")是一个高性能的开源Web服务器,它也可以用作反向代理服务器、负载均衡器、HTTP缓存以及作为邮件代理服务器。它的灵活性、高性能和可扩展性使其成为许多互联网公司和网站的首选服务器软件。本文将介绍Nginx的原理、基础知识以及其在互联网架构中的......
  • 探索PyTorch:介绍及常用工具包展示
    前言PyTorch作为一个强大的开源深度学习框架,近年来在科学计算和人工智能领域备受欢迎。它提供了灵活的张量计算和动态计算图的功能,使得构建和训练深度神经网络变得更加简单和高效。本文将介绍PyTorch的基本概念,并展示一些常用的PyTorch工具包,帮助读者更好地了解和利用PyTorch进......
  • 多线程系列(十七) -线程组介绍
    一、简介在之前的多线程系列文章中,我们陆陆续续的介绍了Thread线程类相关的知识和用法,其实在Thread类上还有一层ThreadGroup类,也就是线程组。今天我们就一起来简单的聊聊线程组相关的知识和用法。二、什么是线程组线程组,简单来说就是多个线程的集合,它的出现主要是为了更方便的......