首页 > 其他分享 >isaac sim 常用记录

isaac sim 常用记录

时间:2024-03-11 16:55:54浏览次数:36  
标签:None cube target 记录 self ._ isaac position sim

目录

常用函数

  1. 添加usd资产
        prim_path='/World/warehouse'
        usd_path = '/home/linhai/app/isaac/Collected_warehouse_with_forklifts/warehouse_with_forklifts.usd'
        stage_utils.add_reference_to_stage(usd_path=usd_path,prim_path=prim_path)

常用demo

task类

from abc import ABC, abstractmethod
from typing import Optional

import numpy as np
from omni.isaac.core.objects import DynamicCuboid
from omni.isaac.core.scenes.scene import Scene
from omni.isaac.core.tasks import BaseTask
from omni.isaac.core.utils.prims import is_prim_path_valid
from omni.isaac.core.utils.stage import get_stage_units
from omni.isaac.core.utils.string import find_unique_string_name


class PickPlace(ABC, BaseTask):
    """[summary]

    Args:
        name (str): [description]
        cube_initial_position (Optional[np.ndarray], optional): [description]. Defaults to None.
        cube_initial_orientation (Optional[np.ndarray], optional): [description]. Defaults to None.
        target_position (Optional[np.ndarray], optional): [description]. Defaults to None.
        cube_size (Optional[np.ndarray], optional): [description]. Defaults to None.
        offset (Optional[np.ndarray], optional): [description]. Defaults to None.
    """

    def __init__(
        self,
        name: str,
        cube_initial_position: Optional[np.ndarray] = None,
        cube_initial_orientation: Optional[np.ndarray] = None,
        target_position: Optional[np.ndarray] = None,
        cube_size: Optional[np.ndarray] = None,
        offset: Optional[np.ndarray] = None,
    ) -> None:
        BaseTask.__init__(self, name=name, offset=offset)
        self._robot = None
        self._target_cube = None
        self._cube = None
        self._cube_initial_position = cube_initial_position
        self._cube_initial_orientation = cube_initial_orientation
        self._target_position = target_position
        self._cube_size = cube_size
        if self._cube_size is None:
            self._cube_size = np.array([0.0515, 0.0515, 0.0515]) / get_stage_units()
        if self._cube_initial_position is None:
            self._cube_initial_position = np.array([0.3, 0.3, 0.3]) / get_stage_units()
        if self._cube_initial_orientation is None:
            self._cube_initial_orientation = np.array([1, 0, 0, 0])
        if self._target_position is None:
            self._target_position = np.array([-0.3, -0.3, 0]) / get_stage_units()
            self._target_position[2] = self._cube_size[2] / 2.0
        self._target_position = self._target_position + self._offset
        return

    def set_up_scene(self, scene: Scene) -> None:
        """[summary]

        Args:
            scene (Scene): [description]
        """
        super().set_up_scene(scene)
        scene.add_default_ground_plane()
        cube_prim_path = find_unique_string_name(
            initial_name="/World/Cube", is_unique_fn=lambda x: not is_prim_path_valid(x)
        )
        cube_name = find_unique_string_name(initial_name="cube", is_unique_fn=lambda x: not self.scene.object_exists(x))
        self._cube = scene.add(
            DynamicCuboid(
                name=cube_name,
                position=self._cube_initial_position,
                orientation=self._cube_initial_orientation,
                prim_path=cube_prim_path,
                scale=self._cube_size,
                size=1.0,
                color=np.array([0, 0, 1]),
            )
        )
        self._task_objects[self._cube.name] = self._cube
        self._robot = self.set_robot()
        scene.add(self._robot)
        self._task_objects[self._robot.name] = self._robot
        self._move_task_objects_to_their_frame()
        return

    @abstractmethod
    def set_robot(self) -> None:
        raise NotImplementedError

    def set_params(
        self,
        cube_position: Optional[np.ndarray] = None,
        cube_orientation: Optional[np.ndarray] = None,
        target_position: Optional[np.ndarray] = None,
    ) -> None:
        if target_position is not None:
            self._target_position = target_position
        if cube_position is not None or cube_orientation is not None:
            self._cube.set_local_pose(translation=cube_position, orientation=cube_orientation)
        return

    def get_params(self) -> dict:
        params_representation = dict()
        position, orientation = self._cube.get_local_pose()
        params_representation["cube_position"] = {"value": position, "modifiable": True}
        params_representation["cube_orientation"] = {"value": orientation, "modifiable": True}
        params_representation["target_position"] = {"value": self._target_position, "modifiable": True}
        params_representation["cube_name"] = {"value": self._cube.name, "modifiable": False}
        params_representation["robot_name"] = {"value": self._robot.name, "modifiable": False}
        return params_representation

    def get_observations(self) -> dict:
        """[summary]

        Returns:
            dict: [description]
        """
        joints_state = self._robot.get_joints_state()
        cube_position, cube_orientation = self._cube.get_local_pose()
        end_effector_position, _ = self._robot.end_effector.get_local_pose()
        return {
            self._cube.name: {
                "position": cube_position,
                "orientation": cube_orientation,
                "target_position": self._target_position,
            },
            self._robot.name: {
                "joint_positions": joints_state.positions,
                "end_effector_position": end_effector_position,
            },
        }

    def pre_step(self, time_step_index: int, simulation_time: float) -> None:
        """[summary]

        Args:
            time_step_index (int): [description]
            simulation_time (float): [description]
        """
        return

    def post_reset(self) -> None:
        from omni.isaac.manipulators.grippers.parallel_gripper import ParallelGripper

        if isinstance(self._robot.gripper, ParallelGripper):
            self._robot.gripper.set_joint_positions(self._robot.gripper.joint_opened_positions)
        return

    def calculate_metrics(self) -> dict:
        """[summary]"""
        raise NotImplementedError

    def is_done(self) -> bool:
        """[summary]"""
        raise NotImplementedError

controller类

import typing

import numpy as np
from omni.isaac.core.controllers.base_controller import BaseController
from omni.isaac.core.utils.rotations import euler_angles_to_quat
from omni.isaac.core.utils.stage import get_stage_units
from omni.isaac.core.utils.types import ArticulationAction
from omni.isaac.manipulators.grippers.gripper import Gripper


class PickPlaceController(BaseController):
    """
    A simple pick and place state machine for tutorials

    Each phase runs for 1 second, which is the internal time of the state machine

    Dt of each phase/ event step is defined

    - Phase 0: Move end_effector above the cube center at the 'end_effector_initial_height'.
    - Phase 1: Lower end_effector down to encircle the target cube
    - Phase 2: Wait for Robot's inertia to settle.
    - Phase 3: close grip.
    - Phase 4: Move end_effector up again, keeping the grip tight (lifting the block).
    - Phase 5: Smoothly move the end_effector toward the goal xy, keeping the height constant.
    - Phase 6: Move end_effector vertically toward goal height at the 'end_effector_initial_height'.
    - Phase 7: loosen the grip.
    - Phase 8: Move end_effector vertically up again at the 'end_effector_initial_height'
    - Phase 9: Move end_effector towards the old xy position.

    Args:
        name (str): Name id of the controller
        cspace_controller (BaseController): a cartesian space controller that returns an ArticulationAction type
        gripper (Gripper): a gripper controller for open/ close actions.
        end_effector_initial_height (typing.Optional[float], optional): end effector initial picking height to start from (more info in phases above). If not defined, set to 0.3 meters. Defaults to None.
        events_dt (typing.Optional[typing.List[float]], optional): Dt of each phase/ event step. 10 phases dt has to be defined. Defaults to None.

    Raises:
        Exception: events dt need to be list or numpy array
        Exception: events dt need have length of 10
    """

    def __init__(
        self,
        name: str,
        cspace_controller: BaseController,
        gripper: Gripper,
        end_effector_initial_height: typing.Optional[float] = None,
        events_dt: typing.Optional[typing.List[float]] = None,
    ) -> None:
        BaseController.__init__(self, name=name)
        self._event = 0
        self._t = 0
        self._h1 = end_effector_initial_height
        if self._h1 is None:
            self._h1 = 0.3 / get_stage_units()
        self._h0 = None
        self._events_dt = events_dt
        if self._events_dt is None:
            self._events_dt = [0.008, 0.005, 0.1, 0.1, 0.0025, 0.001, 0.0025, 1, 0.008, 0.08]
        else:
            if not isinstance(self._events_dt, np.ndarray) and not isinstance(self._events_dt, list):
                raise Exception("events dt need to be list or numpy array")
            elif isinstance(self._events_dt, np.ndarray):
                self._events_dt = self._events_dt.tolist()
            if len(self._events_dt) > 10:
                raise Exception("events dt length must be less than 10")
        self._cspace_controller = cspace_controller
        self._gripper = gripper
        self._pause = False
        return

    def is_paused(self) -> bool:
        """

        Returns:
            bool: True if the state machine is paused. Otherwise False.
        """
        return self._pause

    def get_current_event(self) -> int:
        """

        Returns:
            int: Current event/ phase of the state machine
        """
        return self._event

    def forward(
        self,
        picking_position: np.ndarray,
        placing_position: np.ndarray,
        current_joint_positions: np.ndarray,
        end_effector_offset: typing.Optional[np.ndarray] = None,
        end_effector_orientation: typing.Optional[np.ndarray] = None,
    ) -> ArticulationAction:
        """Runs the controller one step.

        Args:
            picking_position (np.ndarray): The object's position to be picked in local frame.
            placing_position (np.ndarray):  The object's position to be placed in local frame.
            current_joint_positions (np.ndarray): Current joint positions of the robot.
            end_effector_offset (typing.Optional[np.ndarray], optional): offset of the end effector target. Defaults to None.
            end_effector_orientation (typing.Optional[np.ndarray], optional): end effector orientation while picking and placing. Defaults to None.

        Returns:
            ArticulationAction: action to be executed by the ArticulationController
        """
        if end_effector_offset is None:
            end_effector_offset = np.array([0, 0, 0])
        if self._pause or self.is_done():
            self.pause()
            target_joint_positions = [None] * current_joint_positions.shape[0]
            return ArticulationAction(joint_positions=target_joint_positions)
        if self._event == 2:
            target_joint_positions = ArticulationAction(joint_positions=[None] * current_joint_positions.shape[0])
        elif self._event == 3:
            target_joint_positions = self._gripper.forward(action="close")
        elif self._event == 7:
            target_joint_positions = self._gripper.forward(action="open")
        else:
            if self._event in [0, 1]:
                self._current_target_x = picking_position[0]
                self._current_target_y = picking_position[1]
                self._h0 = picking_position[2]
            interpolated_xy = self._get_interpolated_xy(
                placing_position[0], placing_position[1], self._current_target_x, self._current_target_y
            )
            target_height = self._get_target_hs(placing_position[2])
            position_target = np.array(
                [
                    interpolated_xy[0] + end_effector_offset[0],
                    interpolated_xy[1] + end_effector_offset[1],
                    target_height + end_effector_offset[2],
                ]
            )
            if end_effector_orientation is None:
                end_effector_orientation = euler_angles_to_quat(np.array([0, np.pi, 0]))
            target_joint_positions = self._cspace_controller.forward(
                target_end_effector_position=position_target, target_end_effector_orientation=end_effector_orientation
            )
        self._t += self._events_dt[self._event]
        if self._t >= 1.0:
            self._event += 1
            self._t = 0
        return target_joint_positions

    def _get_interpolated_xy(self, target_x, target_y, current_x, current_y):
        alpha = self._get_alpha()
        xy_target = (1 - alpha) * np.array([current_x, current_y]) + alpha * np.array([target_x, target_y])
        return xy_target

    def _get_alpha(self):
        if self._event < 5:
            return 0
        elif self._event == 5:
            return self._mix_sin(self._t)
        elif self._event in [6, 7, 8]:
            return 1.0
        elif self._event == 9:
            return 1
        else:
            raise ValueError()

    def _get_target_hs(self, target_height):
        if self._event == 0:
            h = self._h1
        elif self._event == 1:
            a = self._mix_sin(max(0, self._t))
            h = self._combine_convex(self._h1, self._h0, a)
        elif self._event == 3:
            h = self._h0
        elif self._event == 4:
            a = self._mix_sin(max(0, self._t))
            h = self._combine_convex(self._h0, self._h1, a)
        elif self._event == 5:
            h = self._h1
        elif self._event == 6:
            h = self._combine_convex(self._h1, target_height, self._mix_sin(self._t))
        elif self._event == 7:
            h = target_height
        elif self._event == 8:
            h = self._combine_convex(target_height, self._h1, self._mix_sin(self._t))
        elif self._event == 9:
            h = self._h1
        else:
            raise ValueError()
        return h

    def _mix_sin(self, t):
        return 0.5 * (1 - np.cos(t * np.pi))

    def _combine_convex(self, a, b, alpha):
        return (1 - alpha) * a + alpha * b

    def reset(
        self,
        end_effector_initial_height: typing.Optional[float] = None,
        events_dt: typing.Optional[typing.List[float]] = None,
    ) -> None:
        """Resets the state machine to start from the first phase/ event

        Args:
            end_effector_initial_height (typing.Optional[float], optional): end effector initial picking height to start from. If not defined, set to 0.3 meters. Defaults to None.
            events_dt (typing.Optional[typing.List[float]], optional):  Dt of each phase/ event step. 10 phases dt has to be defined. Defaults to None.

        Raises:
            Exception: events dt need to be list or numpy array
            Exception: events dt need have length of 10
        """
        BaseController.reset(self)
        self._cspace_controller.reset()
        self._event = 0
        self._t = 0
        if end_effector_initial_height is not None:
            self._h1 = end_effector_initial_height
        self._pause = False
        if events_dt is not None:
            self._events_dt = events_dt
            if not isinstance(self._events_dt, np.ndarray) and not isinstance(self._events_dt, list):
                raise Exception("event velocities need to be list or numpy array")
            elif isinstance(self._events_dt, np.ndarray):
                self._events_dt = self._events_dt.tolist()
            if len(self._events_dt) > 10:
                raise Exception("events dt length must be less than 10")
        return

    def is_done(self) -> bool:
        """
        Returns:
            bool: True if the state machine reached the last phase. Otherwise False.
        """
        if self._event >= len(self._events_dt):
            return True
        else:
            return False

    def pause(self) -> None:
        """Pauses the state machine's time and phase."""
        self._pause = True
        return

    def resume(self) -> None:
        """Resumes the state machine's time and phase."""
        self._pause = False
        return

结合写好的task和cotroller

from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.franka.tasks import PickPlace
from omni.isaac.franka.controllers import PickPlaceController

class HelloWorld(BaseSample):
    def __init__(self) -> None:
        super().__init__()
        return

    def setup_scene(self):
        world = self.get_world()
        # We add the task to the world here
        world.add_task(PickPlace(name="awesome_task"))
        return

    async def setup_post_load(self):
	#是一个协程方法,用于在场景加载后设置必要的组件。它检索世界实例,获取任务参数(如机器人和立方体的名称),初始化一个带有机器人夹具和关节细节的PickPlaceController,然后添加一个物理回调,在每个模拟步骤中被调用。最后,它异步启动模拟。
        self._world = self.get_world()
        # The world already called the setup_scene from the task so
        # we can retrieve the task objects
        # Each defined task in the robot extensions
        # has set_params and get_params to allow for changing tasks during
        # simulation, {"task_param_name": "value": [value], "modifiable": [True/ False]}
        task_params = self._world.get_task("awesome_task").get_params()
        self._franka = self._world.scene.get_object(task_params["robot_name"]["value"])
        self._cube_name = task_params["cube_name"]["value"]
        self._controller = PickPlaceController(
            name="pick_place_controller",
            gripper=self._franka.gripper,
            robot_articulation=self._franka,
        )
        self._world.add_physics_callback("sim_step", callback_fn=self.physics_step)
        await self._world.play_async()
        return

    async def setup_post_reset(self):
	#另一个协程方法,旨在在模拟被重置后重置控制器状态,然后再次异步启动模拟。
        self._controller.reset()
        await self._world.play_async()
        return
		
    def physics_step(self, step_size):
        # Gets all the tasks observations
        current_observations = self._world.get_observations()
        actions = self._controller.forward(
            picking_position=current_observations[self._cube_name]["position"],
            placing_position=current_observations[self._cube_name]["target_position"],
            current_joint_positions=current_observations[self._franka.name]["joint_positions"],
        )
        self._franka.apply_action(actions)
        if self._controller.is_done():
            self._world.pause()
        return

标签:None,cube,target,记录,self,._,isaac,position,sim
From: https://www.cnblogs.com/FrostyForest/p/18066517

相关文章

  • 再聊对架构决策记录的一些思考
    1引言第一次在社区发文聊ADR(架构决策记录)是在2022年8月份,在文章( 轻量级ADR机制 )中,详细介绍了以下几个主题:•团队研发面临的主要问题•ADR的结构剖析•ADR的存储形式•ADR在研发流程中所处的位置•ADR常见的误区与疑问在实践中发现仍然有一些普遍性问题与挑战可以探讨。......
  • 服务器配置记录MSSQL
    安装SQLSERVER的时候报错:无法通过WINDOWS功能控制面板自动安装或卸载WINDOWSSERVER角色和功能。WinServer2012R2安装MSSQL2008R2只需安装.NETFramework3.5/更高版本1.打开“服务器管理器”,选择“添加角色和功能”  2.连续点击“下一步”,直到“功能”选项卡中,勾选......
  • 【动态规划】线性dp /训练记录/
    开篇碎碎念前些日子写期望dp,但是...cf的那个C可以dp但是没有开出来,于是决定重新开始练dp√(一定是因为题目做的不够多捏,加训!)是根据这个题单来练哒,指路:【动态规划】普及~省选的dp题然后边练边整理一下思路什么的)))基本思路其实动态规划的本质就是暴力(这也是可以说的吗(遁),考虑好......
  • 2024.3 记录
    3.5vp了一场edu,过了四题,但是D题有*2100,自我感觉还行。这里写一下后三题的题解。CF1913DArrayCollapse数字互不相同,先上个单调栈求出每个点的支配区间。考虑dp,\(f_i\)表示只考虑\([1,i]\)时的方案数,找到最靠左的\(j\)满足\([j,i]\)间不存在小于\(p_i\)的数,那......
  • ARC083 vp记录
    有操作的操作场,考场过了ABC(3/4)A.SugarWater题意:一个杯子,可以容纳\(F\)克糖水,一开始是空的。每次操作:加入\(100A\)克水加入\(100B\)克水加入\(C\)克糖加入\(D\)克糖每\(100\)克水最多溶解\(E\)克糖,求任意次操作后完全溶解的糖水中的最大含糖量,以......
  • Simsiam论文阅读笔记
    AbstractSiamese网络已经成为最近各种无监督视觉表示学习模型的共同结构。这些模型最大限度地提高了一个图像的两个增强之间的相似性,在一定的条件下避免崩溃的解。在本文中,我们报告了令人惊讶的经验结果,简单的Siamese网络可以学习有意义的表示,即使不使用以下内容:(i)负样本对,(ii)大......
  • 记录一个报错信息:Name for argument of type [java.lang.Integer] not specified, and
    报错如下:错误复现代码如下:@GetMapping("/consumer/pay/getById/{orderId}")@Parameter(name="orderId",description="订单id",in=ParameterIn.PATH)publicRgetOrder(@PathVariableIntegerorderId){System.out.println(o......
  • PicGo使用简明教程及踩坑记录
    PicGo使用简明教程及踩坑记录PicGo使用我现在用的博客的记录方式是Typora+PicGo+阿里云oss,这一套配置好后就非常方便了,可以快捷上传图片到云服务器,并且阿里云的速度也是我试过的几个云服务器里面最快的,价格也便宜,如果博客只有少量人看那基本上就跟不用钱一样,每个月就几毛。整套......
  • 3月板刷ARC记录
    ARC058F考虑背包,记\(f_{i,j}\)表示考虑前\(i\)个串,取出长为\(j\)的最小串。由于涉及字典序比较,时间复杂度为\(\mathcalO(nk^2)\)。字典序比较不同于计算式比较,找到\(LCP\)后第一位即可得出结果。考虑仅保留能转移到\(f_{n,k}\)的\(f_{i,j}\)。对于\(f_{i,j1},f......
  • CF99B Help Chef Gerasim 题解
    分别对三种情况进行分类讨论。第一种情况:显然,若\(\sum^{n}_{i=1}a_i\bmodn\neq0\),则输出\(\texttt{Unrecoverableconfiguration.}\);同时,我们遍历\(a_{1\simn}\),若存在两个以上的\(a_i\)满足\(a_i\neq\sum^{n}_{i=1}a_i\divn\),则也输出\(\texttt{Unreco......