模拟赛掉大分(悲
T1
板子,不讲。
T2
首先很明显这题是个去重全排列。
和模板的区别就是加了一个 \(sum\) 参数记录目前已经放了几个苹果。
当 \(x=n+1\) 时若 \(sum=m\),则更新答案。
同时加入一个剪枝:若在搜索过程中 \(sum>m\),则直接 return
结束搜索。
#include<bits/stdc++.h>
using namespace std;
int t,n,m,ans;
int tmp[31];
void dfs(int x,int sum){
if(x==n+1){
if(sum==m) ans++;
return;
}
if(sum>m) return;
for(int i=tmp[x-1];i<=m;i++){
tmp[x]=i;
dfs(x+1,sum+i);
}
}
int main(){
cin>>t;
while(t--){
ans=0;
cin>>m>>n;
dfs(1,0);
cout<<ans<<'\n';
}
return 0;
}
如果你高兴还可以用 dp 做
T3
赛时没想出来,就打了个表跑路,没想到拿了 \(30pts\) /xia
将棋盘看成一个 \(25\) 格的数组,这个题就可以演变为填格子的搜索了。
在 \(\text{DFS}\) 函数中传入两个参数:\(x\) 和 \(tot\),分别记录当前已经填的格子数以及剩下的格子数,初始分别为 \(1,n\)。
若 \(tot=0\),则计算当前矩阵中的五连子个数,存入 \(vis\) 数组中。
否则,循环 \(x \sim 25\),对于每个枚举到的 \(i\),计算出对应的 \(x,y\) 坐标,将此坐标标记为已访问,并且调用 \(\text{dfs}(i+1,tot-1)\) 即可。注意回溯。
#include<bits/stdc++.h>
using namespace std;
int n,ans;
bool vis[31],v[31][31];
void check(){
int sum=0;
for(int i=1;i<=5;i++){
for(int j=1;j<=5;j++){
if(!v[i][j]) break;
if(j==5) sum++;
}
for(int j=1;j<=5;j++){
if(!v[j][i]) break;
if(j==5) sum++;
}
}
for(int i=1;i<=5;i++){
if(!v[i][i]) break;
if(i==5) sum++;
}
for(int i=1;i<=5;i++){
if(!v[i][6-i]) break;
if(i==5) sum++;
}
vis[sum]=1;
}
void dfs(int x,int tot){
//cout<<x<<'\n';
if(!tot){ check(); return; }
if(25-x+1<tot) return;
for(int i=x;i<=25;i++){
int xx=(i-1)/5+1,yy=(i-1)%5+1;
v[xx][yy]=1;
dfs(i+1,tot-1);
v[xx][yy]=0;
}
}
int main(){
cin>>n;
dfs(1,n);
for(int i=1;i<=12;i++)
if(vis[i]) ans+=i;
cout<<ans;
return 0;
}
T4
这题的 \(\text{DFS}\) 做法很好写。将每个公司看作一个格子,分配的机器看作填入的数字,然后按常规的填格子写法即可。
#include<bits/stdc++.h>
using namespace std;
int n,m,maxx;
int ans[31],tmp[31];
int a[31][31];
void dfs(int x,int sum,int tot){
if(x==n+1){
if(tot<=m){
if(sum>maxx){
maxx=sum;
for(int i=1;i<=n;i++) ans[i]=tmp[i];
}
}
return;
}
for(int i=1;i<=m;i++){
tmp[x]=i;
dfs(x+1,sum+a[x][i],tot+i);
}
}
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>a[i][j];
dfs(1,0,0);
cout<<maxx<<'\n';
for(int i=1;i<=n;i++) cout<<i<<' '<<ans[i]<<'\n';
return 0;
}
无奈只有 \(10pts\)(为什么会 WA
两个点啊 \(qwq\))。
于是我们考虑万能的 \(dp\)。
我们令 \(f_{i,j}\) 表示前 \(i\) 个公司分配 \(j\) 个机器的利润总和。
因为分配给子公司的机器数只能为 \(0 \sim j\),则我们在此区间内枚举一个整数 \(k\) 表示给第 \(i\) 个公司分配的机器数,由此得到状态转移方程:
\[f_{i,j}=\max(f_{i,j},f_{i-1,j-k}+a_{i,k}) \]同时,题目要求我们记录分配方案,因此建令 \(p_{i,j,h}\) 表示在前 \(i\) 个公司分配 \(j\) 个机器的最优方案中第 \(h\) 各公司分配到的机器数。
\(p\) 可以在状态转移的时进行更新。更新方程:
\[p_{i,j,h}= \begin{cases} 1 \le i <n \ , \ p_{i-1,j-k,h}\\ i = n \ , \ k \end{cases} \]#include<bits/stdc++.h>
using namespace std;
int n,m;
int a[31][31],f[31][31],p[31][31][31];
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>a[i][j];
for(int i=1;i<=n;i++){
for(int j=0;j<=m;j++){
for(int k=0;k<=j;k++){
if(f[i][j]<f[i-1][k]+a[i][j-k]){
f[i][j]=f[i-1][k]+a[i][j-k];
for(int h=1;h<i;h++)
p[i][j][h]=p[i-1][k][h];
p[i][j][i]=j-k;
}
}
}
}
cout<<f[n][m]<<'\n';
for(int h=1;h<=n;h++)
cout<<h<<' '<<p[n][m][h]<<'\n';
return 0;
}
哈哈没想到吧只有 90 分
由于题目再一次提出了毒瘤的要求:字典序最小。
因此我们考虑枚举整数 \(k\) 表示不给第 \(i\) 个公司的机器数。
所以转移方程就变成了这样:
\[f_{i,j}=\max(f_{i,j},f_{i-1,k}+a_{i,j-k}) \]更新方程变成了这样:
\[p_{i,j,h}= \begin{cases} 1 \le i <n \ , \ p_{i-1,k,h}\\ i = n \ , \ k \end{cases} \]愉快 \(\mathcal{AC}\) !
#include<bits/stdc++.h>
using namespace std;
int n,m;
int a[31][31],f[31][31],p[31][31][31];
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>a[i][j];
for(int i=1;i<=n;i++){
for(int j=0;j<=m;j++){
for(int k=0;k<=j;k++){
if(f[i][j]<f[i-1][k]+a[i][j-k]){
f[i][j]=f[i-1][k]+a[i][j-k];
for(int h=1;h<i;h++)
p[i][j][h]=p[i-1][k][h];
p[i][j][i]=j-k;
}
}
}
}
cout<<f[n][m]<<'\n';
for(int h=1;h<=n;h++)
cout<<h<<' '<<p[n][m][h]<<'\n';
return 0;
}
标签:Living,int,31,笔记,dfs,using,include,Dream,sum
From: https://www.cnblogs.com/XOF-0-0/p/18062518