本文介绍了一种新的相机-激光雷达融合方法,称为“Lift Attented Splat”,该方法完全绕过单目深度估计,而是使用简单的transformer在BEV中选择和融合相机和激光雷达特征。证据表明,与基于Monocular深度估计的方法相比,本文的方法显示出更好的相机利用率,并提高了物体检测性能。贡献如下:
- 基于Lift Splat范式的相机-激光雷达融合方法并没有像预期的那样利用深度。特别地,我们表明,如果完全去除单目深度预测,它们的性能相当或更好。
- 本文介绍了一种新的相机-激光雷达融合方法,该方法使用简单的注意力机制融合纯BEV中的相机和激光雷达特征。论文证明,与基于Lift Splat范式的模型相比,它可以更好地利用相机,并提高3D检测性能。
-
论文:Lift-Attend-Splat: Bird’s-eye-view camera-lidar fusion using transformers 链接:https://arxiv.org/pdf/2312.14919.pdf
主要结构介绍
Lift Splat深度预测通常较差,通过使用绝对相对误差(Abs.Rel.)和均方根误差(RMSE)将其与激光雷达深度图进行定性和定量比较,来分析BEVFusion预测的深度质量。如图1所示,深度预测不能准确反映场景的结构,并且与激光雷达深度图明显不同,后者表明单目深度没有如预期的那样得到利用。论文还进行了研究,改进深度预测并不能提高检测性能!完全取消深度预测不会影响物体检测性能。
我们提出了一种相机-激光雷达融合方法,该方法完全绕过单目深度估计,而是使用简单的transformer在鸟瞰图中融合相机和激光雷达特征。然而,由于大量的相机和激光雷达特征以及注意力的二次性,transformer架构很难简单地应用于相机-激光雷达融合问题。在BEV中投影相机特征时,可以使用问题的几何形状来大幅限制注意力的范围,因为相机特征应该只对沿其相应光线的位置有贡献。我们将这一想法应用于相机-激光雷达融合的情况,并介绍了一种简单的融合方法,该方法使用相机平面中的柱和激光雷达BEV网格中的极射线之间的交叉注意力!交叉注意力不是预测单目深度,而是在激光雷达特征沿着其光线提供的背景下,学习哪些相机特征是最显著的。
除了在BEV中投影相机特征外,我们的模型与基于Lift Splat范式的方法具有相似的总体架构,如下图所示。它由以下模块组成:相机和激光雷达主干,独立生成每个模态的特征;投影和融合模块,将相机特征嵌入BEV并与激光雷达融合;最后是检测头。当考虑目标检测时,模型的最终输出是场景中目标的属性,表示为具有位置、维度、方向、速度和分类信息的3D边界框。
Lift Attented Splat相机激光雷达融合架构如下所示。(左)总体架构:相机和激光雷达主干的特征在传递到检测头之前融合在一起。(inset)我们的3D投影的几何结构:“Lift”步骤通过使用双线性采样沿z方向提升激光雷达特征,将激光雷达BEV特征嵌入投影地平线。“splat”步骤对应于逆变换,因为它使用双线性采样将特征从投影的地平线投影回BEV网格,再次沿着z方向!右边是project模块的细节部分。
实验结果
标签:Attend,融合,相机,Lift,BEV,Splat,激光雷达 From: https://www.cnblogs.com/jimchen1218/p/17947418