(保加利亚 1998 P6)求证:\(x^2y^2 = z^2(z^2 - x^2 - y^2)\) 没有正整数解.
证明:设 \((x, y, z)\) 为满足题设的、使得 \(x + y + z\) 最小的一组解.改写原式得 \(\displaystyle (\frac{z^2}{x^2} - 1)(\frac{z^2}{y^2} - 1) = 2\).由于 \(x, y, z\) 是整数,那么 \(\displaystyle \frac{z^2}{x^2}, \frac{z^2}{y^2}\) 是有理数,不妨设 \(\displaystyle \frac{z^2}{x^2} = \frac{2q + p}{p}, \frac{z^2}{y^2} = \frac{p + q}{q}\),其中 \(p \perp q\),\(p, q\) 是正整数.
于是有 \(pz^2 = (2q + p)x^2, qz^2 = (p + q)y^2\),得 \(q(p + 2q)x^2 = p(p + q)y^2\).
-
若 \(p\) 是奇数:则易知 \(q(p + 2q) \perp p(p + q)\),故 \(q(p + 2q) \mid y^2\),\(p(p + q) \mid x^2\),且 \(\displaystyle \frac{2q + p}{p}\) 是最简分数.于是可设 \(z^2 = k_1(p + q)(p + 2q), x^2 = k_1(p + q)p\)(因为 \(p(p + q) \mid x^2\)),同理有 \(z^2 = k_2(p + q)(p + 2q), y^2 = k_2(p + 2q)q\),\(k_1, k_2\) 是正整数.这表明 \(k_1 = k_2\),所以 \(z^2 = k(p + q)(p + 2q), x^2 = k(p + q)p, y^2 = k(p + 2q)q\).而 \(\gcd^2(x, y) = \gcd(x^2, y^2) = k\gcd((p + q)p, (p + 2q)q) = k\) 是完全平方数,\(p \perp (p + q), q \perp (p + 2q), (p + q) \perp (p + 2q)\),那么存在正整数 \(a, b, c, d\),使 \(p = a^2\),\(q = b^2\),\(p + q = c^2\),\(p + 2q = d^2\).
由代数关系可知 \(a^2 + b^2 = c^2\),\(b^2 + c^2 = d^2\),又它们两两互素,\(p\) 是奇数,知存在正整数 \(m, n, l, r\),使得 \(m \perp n, l \perp r\),且 \(a = m^2 - n^2, b = 2mn, c = m^2 + n^2\) 及 \(b = 2lr, c = l^2 - r^2, d = l^2 + r^2\).于是 \(mn = lr\) 且 \(m^2 + n^2 = l^2 - r^2\),即 \(\displaystyle \frac{m^2n^2}{l^2} = r^2 = l^2 - m^2 - n^2\),故 \(m^2n^2 = l^2(l^2 - m^2 - n^2)\),满足题目形式.由 \(x + y + z\) 的最小性,知 \(m + n + l \geq x + y + z\),但 \(m^2 + n^2 = c \Rightarrow m^4 < c^2 = p + q \leq x^2 \Rightarrow m < x, 2mn = b \Rightarrow n^2 < b^2 = q \leq y^2 \Rightarrow n < y, l^2 + r^2 = d \Rightarrow l^4 < d^2 = p + 2q \leq z^2 \Rightarrow l < z\),故 \(m + n + l < x + y + z\),矛盾.
-
若 \(p\) 是偶数:则 \(q\) 必是奇数.设 \(p = 2k\),\(k\) 是正整数,且必有 \(q \perp k\),则 \(q(p + 2q)x^2 = p(p + q)y^2 \Rightarrow 2q(k + q)x^2 = 2k(2k + q)y^2 \Rightarrow q(k + q)x^2 = k(2k + q)y^2\),同上讨论即可得出矛盾.
综上,\(x^2y^2 = z^2(z^2 - x^2 - y^2)\) 没有正整数解.
标签:frac,2q,1998,displaystyle,perp,P6,保加利亚,正整数,Rightarrow From: https://www.cnblogs.com/wf715/p/Bulgaria-1998-P6.html