含参问题常用三种思想
已知函数\(f(x)=ax\ln x-x+1\),若\(x\in(1,+\infty)\)时,\(f(x)>0\),求\(a\)的取值范围
解
法一:直接讨论
\(f^{\prime}(x)=a(\ln x+1)-1\),\(f^{\prime}(x)\)为增函数,并且\(f^{\prime}(x)>f^{\prime}(1)=a-1\)
当\(a\geq 1\)时,\(f^{\prime}(x)>0\)即\(f(x)\)单调递增,从而\(f(x)>f(1)=0\)合题意
当\(a<1\)时,\(f^{\prime}(1)<0\)而\(f^{\prime}(x)\)单调递增,同时\(x\to +\infty,f^{\prime}(x)\to +\infty\)
则有唯一的\(x_0\in(1,+\infty)\)使得\(f^{\prime}(x_0)=0\)
即在\(x\in(1,x_0)\)上\(f(x)\)是递减的,即\(f(x)<f(1)=0\)
不合题意.
综上\(a\geq 1\)
法二:参变分离
\(ax\ln x-x+1>0\)即$a>\left(\dfrac{x-1}{\ln x}\right)_{\max} $
记\(g(x)=\dfrac{x-1}{\ln x},g^{\prime}(x)=\dfrac{\ln x-1+\dfrac{1}{x}}{\ln^2x}=\dfrac{x\ln x-x+1}{\ln^2x}\)
记\(h(x)=x\ln x-x+1\),\(h^{\prime}(x)=\ln x>0\)即\(h(x)>h(1)=0\)
从而\(g^{\prime}(x)>0\)即\(g(x)>g(1)\)
\(\lim\limits_{x\to1}g(x)=\dfrac{1}{\frac{1}{x}}=1\)
即\(a\geq 1\)
法三:适当的分出直线
当\(a\leq 0\)时,明显不合题
当\(a>0\),原不等式为$ x\ln x>\dfrac{1-x}{a}$
即转化为\(g(x)=x\ln x\)的图像在直线\(y=\dfrac{x-1}{a}\)的上方
做出\(g(x)\)图像,则\(g^{\prime}(1)=1\),从而要使得\(\dfrac{1}{a}<1\)即\(a>1\)