\(f(x)\) 定义域在 \((0,+\infty)\) ,\(f(1)=1 + e\),满足 \(x_2>x_1>0\) 时 \(x_2f(x_1)-x_1f(x_2)>x_2 e^{x_1} - x_1 e^{x_2}\),求 \(f(\ln x)>x+\ln x\) 的解集。
\[x_2(f(x_1)-e^{x_1})>x_1(f(x_2)-e^{x_2}) \]\[\dfrac {f(x_1)-e^{x_1}}{x_1}>\dfrac{f(x_2)-e^{x_2}}{x_2} \]设 $ x_1 =\ln x_1,x_2=\ln x_2,x_2>x_1>1$。
\[\dfrac{f(\ln x_1)-x_1}{\ln x_1}>\dfrac{f(\ln x_2)-x_2}{\ln x_2} \]\[\dfrac{f(\ln x_1)-(x_1+\ln x_1)}{\ln x_1}>\dfrac{f(\ln x_2)-(x_2+\ln x_2)}{\ln x_2} \]\(\because x_2>x_1>1\),\(\therefore \dfrac{f(\ln x)-(x + \ln x)}{\ln x}\) 单调递减。
\[f(\ln x)-(x+\ln x)>0 \]\(\because \ln x > 0 (x \in (1,+\infty))\),\(\therefore\)
\[\dfrac{f(\ln x)-(x+\ln x)}{\ln x}>0 \]所以解集为 \(\varnothing\)???
标签:infty,because,ln,dfrac,解集,therefore,No.1 From: https://www.cnblogs.com/lofty2007/p/17890997.html