题意
给定一个长度为 \(n\) 的括号序列,求该括号序列满足下列条件的子序列个数。
- 长度为偶数
- 设长度为 \(2m\),则 \(s_{1 \ldots m} =\)
(
,\(s_{m + 1 \ldots 2m} =\))
。
Sol
设 \(i\) 为最后一个 (
,\(a\) 表示 \(\sum_{j = 1} ^ {i - 1} [s_i = '(']\)。\(b\) 表示 \(\sum_{j = i + 1} ^ n [s_i = ')']\)
显然可得:
\[ \begin{aligned} ans &= \sum_{i = 1} ^ {len} \sum_{k = 0} ^ {min(a + 1, b)} C_a ^ k C_b ^ {k + 1} \end{aligned} \]我们都知道:
\[ \begin{aligned} \sum_{j = 0} ^ {k} C_n ^ {k - i} C_m ^ i = C_{n + m}^k \end{aligned}\]这个很显然吧,考虑组合意义。
在 \(n + m\) 个物品里面共选 \(k\) 个。
发现这两个式子长得很像。
考虑随便乱搞下。
\[ \begin{aligned} ans &= \sum_{i = 1} ^ {len} \sum_{k = 0} ^ {min(a + 1, b)} C_a ^ k C_b ^ {k + 1} \\ &= \sum_{i = 1} ^ {len} \sum_{k = 0} ^ {min(a + 1, b)} C_a ^ {a - k} C_b ^ {k + 1} \\ &= \sum_{i = 1} ^ {len} C_{a + b} ^ {a + 1} \end{aligned} \]这道题就做完了,时间复杂度 \(O(n)\)。
Code
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <array>
#define int long long
using namespace std;
#ifdef ONLINE_JUDGE
#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
char buf[1 << 23], *p1 = buf, *p2 = buf, ubuf[1 << 23], *u = ubuf;
#endif
int read() {
int p = 0, flg = 1;
char c = getchar();
while (c < '0' || c > '9') {
if (c == '-') flg = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
p = p * 10 + c - '0';
c = getchar();
}
return p * flg;
}
string read_() {
string ans;
char c = getchar();
while (c != '(' && c != ')')
c = getchar();
while (c == '(' || c == ')') {
ans += c;
c = getchar();
}
return ans;
}
void write(int x) {
if (x < 0) {
x = -x;
putchar('-');
}
if (x > 9) {
write(x / 10);
}
putchar(x % 10 + '0');
}
const int N = 2e5 + 5, mod = 1e9 + 7;
namespace Mth {
array <int, N> fac, inv;
int pow_(int x, int k, int p) {
int ans = 1;
while (k) {
if (k & 1) ans = ans * x % p;
x = x * x % p;
k >>= 1;
}
return ans;
}
void init() {
fac[0] = 1; int n = 2e5;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % mod;
inv[n] = pow_(fac[n], mod - 2, mod);
for (int i = n; i; i--)
inv[i - 1] = inv[i] * i % mod;
}
int C(int n, int m) {
if (n < m) return 0;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
void Mod(int& x) {
if (x >= mod) x -= mod;
if (x < 0) x += mod;
}
}
array <int, N> h;
signed main() {
string s = " " + read_();
int n = s.size() - 1;
for (int i = n; i; i--)
h[i] = h[i + 1] + (s[i] == ')');
Mth::init();
int ans = 0, tp = 0;
for (int i = 1; i <= n; i++) {
if (s[i] == ')') continue;
ans += Mth::C(tp + h[i], tp + 1), Mth::Mod(ans);
tp++;
}
write(ans), puts("");
return 0;
}
标签:School,include,CF785D,int,Anton,sum,ans,aligned,mod
From: https://www.cnblogs.com/cxqghzj/p/17881366.html