首页 > 其他分享 >【短道速滑十一】标准的Gabor滤波器及Log_Gabor滤波器的实现、解析、速度优化及其和Halcon中gen_gabor的比较。

【短道速滑十一】标准的Gabor滤波器及Log_Gabor滤波器的实现、解析、速度优化及其和Halcon中gen_gabor的比较。

时间:2023-10-19 16:33:11浏览次数:34  
标签:滤波器 Angle Gabor double gabor 短道 cv

  最近有朋友在研究Halcon中gen_gabor的函数,和我探讨,因为我之前也没有怎么去关注这个函数,因此,前前后后大概也折腾了有一个星期去模拟实现这个东西,虽然最终没有实现这个函数,但是也是有所收获,这里做一点总结,也算是最这个函数有个完美的收尾吧。

  1、Gabor滤波器

  首先总是度娘出场,关键词Gabor滤波器,一大堆东西出来了,里面最多的肯定是关于OpenCv的getGaborKernel函数,这个函数的具体代码如下:

/*
 Gabor filters and such. To be greatly extended to have full texture analysis.
 For the formulas and the explanation of the parameters see:
 http://en.wikipedia.org/wiki/Gabor_filter
*/
cv::Mat cv::getGaborKernel( Size ksize, double sigma, double theta,
                            double lambd, double gamma, double psi, int ktype )
{
    double sigma_x = sigma;
    double sigma_y = sigma/gamma;
    int nstds = 3;
    int xmin, xmax, ymin, ymax;
    double c = cos(theta), s = sin(theta);
    if( ksize.width > 0 )
        xmax = ksize.width/2;
    else
        xmax = cvRound(std::max(fabs(nstds*sigma_x*c), fabs(nstds*sigma_y*s)));

    if( ksize.height > 0 )
        ymax = ksize.height/2;
    else
        ymax = cvRound(std::max(fabs(nstds*sigma_x*s), fabs(nstds*sigma_y*c)));

    xmin = -xmax;
    ymin = -ymax;
    CV_Assert( ktype == CV_32F || ktype == CV_64F );
    Mat kernel(ymax - ymin + 1, xmax - xmin + 1, ktype);
    double scale = 1;
    double ex = -0.5/(sigma_x*sigma_x);
    double ey = -0.5/(sigma_y*sigma_y);
    double cscale = CV_PI*2/lambd;
    for( int y = ymin; y <= ymax; y++ )
        for( int x = xmin; x <= xmax; x++ )
        {
            double xr = x*c + y*s;
            double yr = -x*s + y*c;

            double v = scale*std::exp(ex*xr*xr + ey*yr*yr)*cos(cscale*xr + psi);
            if( ktype == CV_32F )
                kernel.at<float>(ymax - y, xmax - x) = (float)v;
            else
                kernel.at<double>(ymax - y, xmax - x) = v;
        }
    return kernel;
}

  可以快速看出,这段代码仅仅是根据一些参数计算出一个卷积核,具体的公式我也没怎么关注,里面有个nstds 这个常量为3,这个只在用户输入的ksize尺寸为0的时候需要用到,感觉是和高斯核函数在半径大于3*Sigma后其对结果的贡献就可以忽略不计有关。 

  这个函数生成的卷积核的形状和参数之间的关系,很多文章都有探讨,这个不是本文的重点,比如下面这个链接:https://blog.csdn.net/Wslsdx/article/details/110728050

  基本上,在空域他的形状就是一些有间隔的白色过度条,在频域,则基本为两处白色亮点,如下图所示:

           

      卷积核空域图形化               对应的频域图

  通常,CV的getGaborKernel函数都要配合Filter2D函数进行卷积得到想要的结果。 

  网络上一个有意思的视觉效果方面的算法在https://zhuanlan.zhihu.com/p/584907623有提到,可以用这个滤波器来做一些特效。

static std::vector<cv::Mat> build_filters()
{
    std::vector<cv::Mat> filters;
    const int ksize = 31;
    const double sigma = 4.0;
    const double lambd = 10.0;
    const double gamma = 0.5;
    const double psi = 0;
    // 此处创建16个滤波器, 只有 getGaborkernel 的第三个参数 theta 不同
    for (int i = 0; i < 16; i++)
    {
        double theta = CV_PI * i / 16;
        cv::Mat kernel = cv::getGaborKernel(cv::Size(ksize, ksize), sigma, theta, lambd, gamma, psi, CV_32F);
        kernel /= 1.5 * cv::sum(kernel)[0];
        filters.emplace_back(kernel);
    }
    return filters;
}
cv::Mat process(const cv::Mat& src, std::vector<cv::Mat>& filters)
{
    cv::Mat accum = cv::Mat::zeros(src.size(), src.type());
    for (cv::Mat kernel: filters)
    {
        cv::Mat fimg;
        AutoTimer timer("filter2D");
        cv::filter2D(src, fimg, CV_8UC3, kernel); // 这里是耗时的瓶颈
        AutoTimer timer("getmax");
        accum = cv::max(accum, fimg);
    }
    return accum;
}
int main()
{
    cv::Mat src = cv::imread(image_path);
    std::vector<cv::Mat> filters = build_filters();
    cv::Mat res = process(src, filters);
}

    、

  这里用了16个滤波器组合求最大值,得到了一种特征线条凸出的效果。 

  当然,OpenCv的这个滤波器在一些特征识别方面也有着很大的作用,比如斑马线识别等等。

  但是,测试发现这个滤波器对参数的配置极其敏感,同一个参数,一般两个值如果只相差一点点,一般出来的效果不会有太大的区别,但是这个函数,确可能会出现极大的差异。比如波长这个参数,当为0.4和0.5的结果大相径庭。       

                波长为0.4时的结果                                                    波长为0.5时的结果

  仔细的分析这个问题,我们会发现,这个还是由于当参数改变时,这个滤波器的权重会出现波动,一般这些卷积核都需要归一化或做相关处理,当波长为0.5时,我们会发现归一化时,所有滤波器的和可能为负数或者很小的数,而为0.4时则较为正常。因此,出现了参数改变一点点,结果改变一大串的问题。

  再稍微撤远一点,当我自己实现这个函数时,我们会发现他的主要耗时还是Filter2D函数,关于这个函数,OpenCV内部是做了优化的,他会根据硬件的支持情况使用opencl/ipp等加速资源实现,速度是相当的快,而且也会对核的大小做判断,很小的核不会使用FFT。  我这里直接使用FFT做的实现,虽然我在进行FFT卷积时做了很多优化,比如拆解为多个256*256的FFT, 比如充分利用虚部的数据等等,结果还是干不过Opencv的速度。

  二、LogGabor滤波器

  拿OpenCv的Gabor滤波器和Halcon的gen_gabor相比,发现他们根本不是一回事,gen_gabor直接生成了频域的数据,而不是生成了卷积核。关于这个算子,我们发现halcon里的描述也不是特别的清晰,这有点不太像他的风格。

  百度搜索gen_gabor我们能发现的99%的资料都是halcon帮助文档的英文原版或者是相关翻译,基本没有对其进行原理进行描述。可能也是因为这个算子不是很常用的原因吧。

  在搜索Gabor滤波器时,也看到了一些文章讲LogGabor滤波器,其中有一篇文章有提到 Log-Gabor函数并不能在空间域中得到表达式,滤波器的构造须在频域中进行,这个和gen_gabor的描述非常相似。后面我们对其参数进行了一些分析,基本可以确定halcon的gabor应该是类似于LogGabor滤波器之类的。

  通过搜索LogGabor,我们得到了一下几个比较有用的参考链接和代码:

   Python OpenCV实现Log Gabor滤波器(由LGHD描述符扩展) 以及 Github中一篇 PhaseCongruency/gaborconvolve.m的matlab代码

  还有一个非常有用的图片:

               

  通过阅读这几篇文章及其配套的代码,我们发现这个频域的滤波器可由Log-Radial Gaussian和Angular Gaussian组合而成,在Python那篇文章中,则有这更为明确的公式:

  原文描述如下:

      一个二维的L-Gaborj波器可以分解为径向滤波器和角度滤波器两部分,对应极坐标公式为:

          

      完整的Log-Gabor滤波器由这两部分相乘得到:

            

  这个公式也和上面的图片能完全对应。

  在代码实现上,我发现无损是Python的代码还是matlab的代码其实都是一个版本的,他们在计算有关的过程中都有一个lowpass的过程,我不清楚那个是目的是啥,也不知道哪里的参数来源依据是什么,但是我感觉他们不应该是我所需要的,我需要的就是上面两个公式,结合那些参考代码,我们对第一个公式(径向滤波器)的M代码实现如下:

WaveLength = 10;
SigmaR = 0.4;
cols = 500, rows=500;
[x,y] = meshgrid( [-cols/2:(cols/2-1)]/cols,[-rows/2:(rows/2-1)]/rows);
radius = sqrt(x.^2 + y.^2);       
Frequency = 1.0 / WaveLength;                  % 频率等于波长的导数
logGabor = exp((-(log(radius / Frequency)).^2) / (2 * SigmaR * SigmaR));  % log gabor函数的传递函数表达式
imshow(logGabor,[])

  对第二个公式的实现代码如下:

Angle = 45 / 180 *3.1415926;
SigmaA = 0.4;
cols = 500, rows=500;
[x,y] = meshgrid( [-cols/2:(cols/2-1)]/cols,[-rows/2:(rows/2-1)]/rows);
theta = atan2(-y,x);              
sintheta = sin(theta);
costheta = cos(theta);
ds = sintheta * cos(Angle) - costheta * sin(Angle);    
dc = costheta * cos(Angle) + sintheta * sin(Angle);     
dtheta = atan2(abs(ds),abs(dc));                           
spread = exp((-dtheta.^2) / (2 * SigmaA * SigmaA));      
imshow(spread,[])

  当将两者组合起来后,即产生如下的代码:

WaveLength = 10;
SigmaR = 0.4;
Angle = 45 / 180 *3.1415926;
SigmaA = 0.4;
cols = 500, rows=500;
[x,y] = meshgrid( [-cols/2:(cols/2-1)]/cols,[-rows/2:(rows/2-1)]/rows);
radius = sqrt(x.^2 + y.^2);  
Frequency = 1.0 / WaveLength;                  % 频率等于波长的导数
logGabor = exp((-(log(radius / Frequency)).^2) / (2 * SigmaR * SigmaR));  % log gabor函数的传递函数表达式
theta = atan2(-y,x);              
sintheta = sin(theta);
costheta = cos(theta);
ds = sintheta * cos(Angle) - costheta * sin(Angle);    
dc = costheta * cos(Angle) + sintheta * sin(Angle);     
dtheta = atan2(abs(ds),abs(dc));                           
spread = exp((-dtheta.^2) / (2 * SigmaA * SigmaA));      
imshow(logGabor .* spread,[])

  三段代码产生的图像依次如下所示:

  

                                        WaveLength = 10,SigmaR = 0.4,Angle = 45 / 180 *3.1415926, SigmaA = 0.4;

  通过改变参数可以获得不同的效果,比如,WaveLength = 5,SigmaR = 0.05,Angle = 30 / 180 *3.1415926, SigmaA = 0.3时的效果如下:

    

  注意到,相比于原始的代码,我们在计算dtheta时,稍微做了修改,这是因为,频域的数据一般是要求堆成的,而原始的角向滤波器是非对称的,因此,我们改成了atan2(abs(ds),abs(dc));

  这个生成的过程里有很多浮点的计算,而且有几个复杂度比较高的函数,因此,计算还是有所耗时的。 

  我们来和halcon的gen_gabor的参数做下比较:

        gen_gabor( : ImageFilter : Angle, Frequency, Bandwidth, Orientation, Norm, Mode, Width, Height : )

  后面Norm, Mode, Width, Height 这四个参数不用管它,我们主要看看前面四个参数。 

  注意到我们刚才的代码里也提供了四个可选的参数,即WaveLength,SigmaR,Angle, SigmaA,那他们之间有么有什么对应的关系呢。 

  通过多次比较和测试,我们可以定性的确定如下联系:

  1、gen_gabor里的Orientation和我的LogGabor里的Angle基本是一个意思,这个可以从Orientation的范围可以看到,就是个角度范围:

     Orientation (input_control) real → (real)
        Angle of the principal orientation,Suggested values: 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.14

    2、gen_gabor的Bandwidth和LogGabor的SigmaR的趋势基本是一致的。

       3、gen_gabor的Frequency和LogGabor的WaveLength的趋势基本是相反的,但是WaveLength本身就是Frenquency的倒数,都是会随着Frequency的变小,频域的有效部分想中心收缩。

       4、gen_gabor的Angle和LogGabor的SigmaA的趋势基本是相反的。

  也就是说这4个参数基本上都存在一一对应的关系,只是说我们无法确认他们之间的绝对值之间的联系,毕竟halcon里也没有提供具体的计算式,只要稍微某个地方有些取值不同,就会造成不同的结果。 

  由于loggabor提供的已经是频域的数据了,因此,后续的计算就比较简单了,因为频域的乘法就相当于于时域的卷积,因此,直接把某个图像的频域数据乘以这个LogGabor数据就可以了。

       但是,这就要求LogGabor的数据维度必须和图像是一样大小的,其实这个有个隐藏的问题,即边缘问题,因为卷积对于边缘一般来说是需要扩展的,否则会遇到一些小小意料之外的问题。 

  做了一个简单的比较,当gen_gabor和LogGabor滤波器的可视化图基本类似时,大部分情况两者之间的效果似乎方向是一致的。 

      

            halcon的gen_gabor可视化结果                                      对应的滤波器输出

    

     LogGabor参数                            LogGabor可视化结果                            对应的滤波器结果

  上述结果的halcon代码如下所示:

read_image (Image, 'fabrik')
get_image_size (Image, Width, Height)
gen_gabor(Filter,10,0.1,50,1.57,'n','dc_center',Width, Height)
fft_generic(Image,ImageFFT,'to_freq',-1,'none','dc_center','complex')
convol_gabor(ImageFFT,Filter,Gabor,Hilbert)
fft_generic(Gabor,GaborInv,'from_freq',1,'none','dc_center','byte')

  可以看出,两者的结果存在一定的相似性,从某个侧面说明我们的猜测具有一定的科学性。

  三、速度优化

  从上面的过程可以看到我们的LogGabor滤波器的生成有着较为复杂的计算公式,而且有多个函数调用,这些函数其实都是有着较为复杂的内部计算的,要进行优化,可以从多方面出发,第一个是用C语言处理吧,把一些公共的计算放到循环外部,把能优化掉的除法尽量改为乘法,还可以把那个exp的计算合并为一个,因为我们知道exp(a) * exp(b) = exp(a+b),这样就可以减少一次exp计算了。

  当然,我们还可以进行指令集优化,我们可以自定义_mm_atan2_ps, _mm_sincos_ps, _mm_exp_ps等等指令集函数(网络上可以找到的),他们可以接受成吨的输出。很爽,至少速度比C版本的提高3到4倍。

  我们在计算频域相乘时,也可以适当的考虑扩大图像,让图像的尺寸变为那些更有利于做FFT变换的数据,比如4、5、8的倍数等等,这样,可以有效地提高FFT的运算速度,并且对结果只会造成轻微的影响。

  关于这个算法目前就研究这么多吧,希望能造福有需要的人,也能造福自己。

  此更新算法位于我的SSE Demo的如下目录:   Detection(检测相关)---》Gabor Filter(Gabor滤波)。

  SSE Demo下载地址: https://files.cnblogs.com/files/Imageshop/SSE_Optimization_Demo.rar

  如果想时刻关注本人的最新文章,也可关注公众号或者添加本人微信:  laviewpbt

                             

翻译

搜索

复制

<iframe height="240" width="320"></iframe>

标签:滤波器,Angle,Gabor,double,gabor,短道,cv
From: https://www.cnblogs.com/Imageshop/p/17774366.html

相关文章

  • 直流变换器的输入滤波器分析与设计
    最近初识输入滤波电路,将功能分析记录如下,欢迎各位大佬批评指正。未完待续~~~1、作用滤波电路种类较多,但在功率变换器里面,常用的滤波电路电路是π型滤波器。主要目的是用于降低电流纹波,降低EMI,也更有利于多级功率变换器级联。2、原理分析以Buck电路为例,输入......
  • 高通、低通、带通 三种滤波器的工作原理
    滤波器作为一种选频装置,是信号处理中的一个重要概念。目前主要由低通滤波器、高通滤波器和带通滤波器和带阻滤波器四种,当然也可以按照电路工作原理分为无源和有源滤波器两大类。按照电容电感数量和滤波次数分:一阶、二阶、三阶滤波等。是按照多少个储能器件即滤波次数有关;两个电容......
  • FIR滤波器的设计
    1.窗函数法设计步骤注:H(z)可由h[k]得到,因为h[k]是有限长的窗函数设计滤波器时,系统函数逼近的好坏,取决于窗函数的幅度频谱\(W_N\)(Ω)矩形窗a.由于存在吉伯斯现象,故滤波器阶数增加之后,阻带衰减不变,但过渡带减小。b.窗函数的主瓣宽度决定了H(\(e^jΩ\))过渡带的宽度......
  • BOSHIDA DC电源模块选用电容滤波器的注意事项
    BOSHIDADC电源模块选用电容滤波器的注意事项DC电源模块是电子系统中的重要部件,常用于给各种电子设备供电。为了使输出的直流电压更加稳定,需要在电源模块中加入电容滤波器。电容滤波器的作用是平滑输出的直流电压,去除其中的纹波信号,使输出电压更加稳定。然而,选用电容滤波器时需要......
  • FIR滤波器
    1.线性相位???什么事线性相位线性相位的充要条件线性相位系统的分类2.线性相位系统的频域特性I型II型幅度关于原点偶对称;幅度关于横轴的π这一点奇对称,即A(π)=0,所以不能用高通、带阻滤波器的设计(因为对于离散系统,π这点是其最高的频率)相位是过原点的一条直线II......
  • BOSHIDA DC电源模块电容滤波器的原理及构成
    BOSHIDADC电源模块电容滤波器的原理及构成DC电源模块电容滤波器是电源输出端的重要组成部分,其主要作用是滤除由电源输出的直流电压中所含的杂波和噪声,并将其平滑处理为一个稳定的直流电压输出。在电子设备的数字、模拟电路、电机驱动等方面,稳定的电源输出对于保证设备的正常运行......
  • BOSHIDA DC电源模块在电容滤波器上的设计
    BOSHIDADC电源模块在电容滤波器上的设计DC电源模块在电容滤波器上的设计是电源管理系统中非常重要的一部分,其目的是为了确保电源输出电压的稳定性和纹波尽可能小。在设计中,需要考虑到电源负载的变化和变压器等电源配件的电磁干扰等因素。下面我们详细介绍一下电容滤波器设计中的......
  • 【短道速滑十】非局部均值滤波的指令集优化和加速(针对5*5的搜索特例,可达到单核1080P灰
        非局部均值滤波(NonLocalMeans)作为三大最常提起来的去燥和滤波算法之一(双边滤波、非局部均值、BM3D),也是有着很多的论文作为研究和比较的对象,但是也是有着致命的缺点,速度慢,严重的影响了算法的应用范围。目前在已有的文献中尚未看到在不对算法的本质原理上做更改的情况......
  • 数字信号处理-IIR滤波器
    1.IIR滤波器的设计步骤首先设计满足技术指标的模拟滤波器将模拟滤波器转换为数字滤波器2.如何设计模拟滤波器将任意的模拟滤波器指标转换为低通的模拟滤波器指标设计好低通滤波器(关键步骤)通过变换,将低通滤波器转换成任意的模拟滤波器低通模拟滤波器有三个模板:BW、CB、C......
  • 卡尔曼滤波器在实际工程中考虑的问题-------新息的分析
    一、本文重点本篇文章主要讨论的是什么可以称为卡尔曼滤波器工程的问题,该部分主要是根据卡尔曼滤波器在长期的应用和误用实践中发展出来的。本篇文章的参考内容来自《卡尔曼滤波理论和实践》,同时结合自己的项目开发挑出部分自己测试过程中经常调试的内容。如果有侵权请联系删......