首页 > 其他分享 >P3384 【模板】轻重链剖分/树链剖分

P3384 【模板】轻重链剖分/树链剖分

时间:2022-10-03 13:34:29浏览次数:103  
标签:链剖分 剖分 int modify dfs 树链 leq include 节点

【模板】轻重链剖分/树链剖分

题目描述

如题,已知一棵包含 \(N\) 个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作:

  • 1 x y z,表示将树从 \(x\) 到 \(y\) 结点最短路径上所有节点的值都加上 \(z\)。

  • 2 x y,表示求树从 \(x\) 到 \(y\) 结点最短路径上所有节点的值之和。

  • 3 x z,表示将以 \(x\) 为根节点的子树内所有节点值都加上 \(z\)。

  • 4 x 表示求以 \(x\) 为根节点的子树内所有节点值之和

输入格式

第一行包含 \(4\) 个正整数 \(N,M,R,P\),分别表示树的结点个数、操作个数、根节点序号和取模数(即所有的输出结果均对此取模)。

接下来一行包含 \(N\) 个非负整数,分别依次表示各个节点上初始的数值。

接下来 \(N-1\) 行每行包含两个整数 \(x,y\),表示点 \(x\) 和点 \(y\) 之间连有一条边(保证无环且连通)。

接下来 \(M\) 行每行包含若干个正整数,每行表示一个操作。

输出格式

输出包含若干行,分别依次表示每个操作 \(2\) 或操作 \(4\) 所得的结果(对 \(P\) 取模)。

样例 #1

样例输入 #1

5 5 2 24
7 3 7 8 0 
1 2
1 5
3 1
4 1
3 4 2
3 2 2
4 5
1 5 1 3
2 1 3

样例输出 #1

2
21

提示

【数据规模】

对于 \(30\%\) 的数据: \(1 \leq N \leq 10\),\(1 \leq M \leq 10\);

对于 \(70\%\) 的数据: \(1 \leq N \leq {10}^3\),\(1 \leq M \leq {10}^3\);

对于 \(100\%\) 的数据: \(1\le N \leq {10}^5\),\(1\le M \leq {10}^5\),\(1\le R\le N\),\(1\le P \le 2^{31}-1\)。

【样例说明】

树的结构如下:

各个操作如下:

故输出应依次为 \(2\) 和 \(21\)。

解题思路

这是一道树剖的板子题,树剖部分的解释在代码里,线段树部分作为前置知识不再解释
ps:军理课闲的没事看了看kruskal重构树,课后去洛谷找了一道能用kruskal重构树的简单题P1967 [NOIP2013 提高组] 货车运输,在看题解学习怎么用重构树写这题的时候又遇到了两遍dfs求lca这个东西,而这个东西树剖里有,但一直不会,于是就把树剖学了)))以后lca只用树剖写!毕竟常数小)

代码

// Problem: P3384 【模板】轻重链剖分/树链剖分
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P3384
// Memory Limit: 125 MB
// Time Limit: 1000 ms
// Time: 2022-10-01 16:48:48
// 
// Powered by CP Editor (https://cpeditor.org)

//fw
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<set>
#include<map>
#include<unordered_map>
#include<stack>
#include<cmath>
#define IOS ios::sync_with_stdio(false);cin.tie(0); cout.tie(0);
#define debug(a) cout<<#a<<"="<<a<<endl;
#define sv(a,l,r,x) for(int i=l;i<=r;i++)a[i]=x;
#define pii pair <int, int>
#define endl '\n'
#define pb push_back
#define lc u<<1
#define rc u<<1|1
using namespace std;
typedef long long ll;
const int INF=0x3f3f3f3f;
const int N=1e5+10,M=2*N;
int n,m,r,p;
struct node
{
	int l,r;
	ll sum,add;
}tr[N<<2];
int h[N],e[M],ne[M],w[M],idx;
int id[N],nw[N],fa[N],dep[N],top[N],sz[N],son[N],cnt;
void add(int a,int b)
{
	e[idx]=b;ne[idx]=h[a];h[a]=idx++;
}
void pushup(int u)
{
	tr[u].sum=tr[lc].sum+tr[rc].sum;
}
void pushdown(int u)
{
	auto &root=tr[u],&l=tr[lc],&r=tr[rc];
	if(root.add)
	{
		l.add+=root.add;
		r.add+=root.add;
		l.sum+=(l.r-l.l+1)*root.add;
		r.sum+=(r.r-r.l+1)*root.add;
		root.add=0;
	}
}

void build(int u,int l,int r)
{
	if(l==r)
	{
		tr[u]={l,r,nw[l],0};
		return;
	}
	tr[u]={l,r};
	int mid=l+r>>1;
	build(lc,l,mid);
	build(rc,mid+1,r);
	pushup(u);
}
ll query(int u,int l,int r)
{
	if(tr[u].l>=l&&tr[u].r<=r)
	{
		return tr[u].sum;
	}
	ll ans=0;
	pushdown(u);
	int mid=tr[u].l+tr[u].r>>1;
	if(l<=mid)ans+=query(lc,l,r);
	if(r>mid)ans+=query(rc,l,r);
	return ans;
}
void modify(int u,int l,int r,int k)
{
	if(tr[u].l>=l&&tr[u].r<=r)
	{
		tr[u].sum+=(tr[u].r-tr[u].l+1)*k;
		tr[u].add+=k;
		return ;
	}
	int mid=tr[u].l+tr[u].r>>1;
	pushdown(u);
	if(l<=mid)modify(lc,l,r,k);
	if(r>mid)modify(rc,l,r,k);
	pushup(u);
}



void dfs1(int u,int father,int depth)//当前节点,父节点,当前深度
{
	fa[u]=father;dep[u]=depth;sz[u]=1;
	for(int i=h[u];~i;i=ne[i])
	{
		int j=e[i];
		if(j==father)continue;
		dfs1(j,u,depth+1);
		sz[u]+=sz[j];//累加子树大小
		if(sz[son[u]]<sz[j])son[u]=j;//更新重儿子
	}
}
void dfs2(int u,int t)//当前点,当前重链的顶点
{
	id[u]=++cnt;nw[cnt]=w[u];//给点赋予dfs序,并把这个点的值转移到dfs序对应点上

	top[u]=t;//存储这个点所在重链的顶点
	
	if(!son[u])return;//如果是叶子节点则没有重儿子,直接返回
	
	//优先遍历重链上的点,使得重链上点的dfs序连续
	//因为修改查询的时候是一段一段的修改 当前点->重链顶点 再跳过去,优先搜索重儿子可以使修改查询的每一段连续,便于线段树维护区间
	
	dfs2(son[u],t);

	//搜索重儿子以外的点
	for(int i=h[u];~i;i=ne[i])
	{
		int j=e[i];
		if(j==fa[u]||j==son[u])continue;
		dfs2(j,j);//对于重儿子以外的点,这条重链的顶点就是这个非重儿子自己
	}	
}


ll query_tree(int u)//因为子树的dfs序是“连续“的,根节点的dfs最先遍历到的点,最后一个点的dfs序显然是根节点的dfs序+子树大小-1
{
	return query(1,id[u],id[u]+sz[u]-1);
}
//子树修改和查询同理,改个函数名就行
void modify_tree(int u,int k)
{
	modify(1,id[u],id[u]+sz[u]-1,k);
}

//路径的操作是终点,基本思路和倍增lca有点类似,
void modify_path(int u,int v,int k)
{
	
	while(top[u]!=top[v])//若两个点的重链顶点不同,则说明不在一条重链上
	{
		if(dep[top[u]]<dep[top[v]])swap(u,v);//把u换成重链顶点深度较深的点,然后开始先上跳
		
		modify(1,id[top[u]],id[u],k);//修改当前点-重链顶点这一段,因为线段树是建立在dfs序上,所以需要套一个id数组
		//因为顶点的深度浅,所以先被遍历到,dfs序也就小,所以是修改id[top[u]]-id[u]这一段
		
		//因为操作都是闭区间,顶点已经被操作过了,所以需要跳到他的父节点
		u=fa[top[u]];//跳到顶点的父节点,准备修改下一段
	}
	//此时两个点已经在一条链上了,只需要修改最后一段即可
	if(dep[u]<dep[v])swap(u,v);//使u换成深度大的点
	
	modify(1,id[v],id[u],k);//修改最后一段
}

//和路径修改基本一致,只是改个函数名加个计算res
ll query_path(int u,int v)
{
	ll res=0;
	while(top[u]!=top[v])
	{
		if(dep[top[u]]<dep[top[v]])swap(u,v);
		res+=query(1,id[top[u]],id[u]);
		u=fa[top[u]];
	}
	if(dep[u]<dep[v])swap(u,v);
	res+=query(1,id[v],id[u]);
	return res;
}
int main()
{
   memset(h,-1,sizeof h);//前向星初始化
   cin>>n>>m>>r>>p;
   for(int i=1;i<=n;i++)cin>>w[i];//每个点的初始值
   for(int i=1;i<=n-1;i++)
   {
   	int a,b;
   	cin>>a>>b;
   	add(a,b);add(b,a);//加边
   }
	//两遍dfs预处理出所需信息
   dfs1(r,0,1); //预处理出父节点、深度、子树大小、重儿子
   dfs2(r,r);

	//在树dfs序上建线段树
   build(1,1,n);
   
   //处理查询
   while(m--)
   {
		 int t,u,v,k;
    	cin>>t>>u;
    	if(t==1)
    	{
    		cin>>v>>k;
    		modify_path(u,v,k);
    	}
    	else if (t==3)
    	{
    		cin>>k;
    		modify_tree(u,k);
    	}
    	else if (t==2)
    	{
    		cin>>v;
    		printf("%lld\n",query_path(u,v)%p);
    	}
		  else printf("%lld\n",query_tree(u)%p);
   }
    return 0;
}

标签:链剖分,剖分,int,modify,dfs,树链,leq,include,节点
From: https://www.cnblogs.com/avarice/p/16750398.html

相关文章

  • 【luogu P6779】rla1rmdq(分块)(树链剖分)
    rla1rmdq题目链接:luoguP6779题目大意给你一个n个点的有根树,根给出,和一个值域在1~n的数组。然后m次操作,每次对于一个数组的区间l~r,把它们的值都变成格子树上父......
  • 树链剖分
    解决树上的很多问题。比如子树操作,链操作等等,但是不能处理动态问题(处理动态树问题大都要用LCT)。树链剖分同可持久化线段树一样,只是一个工具,难点都在维护的东西上。像什么......
  • 树链剖分
    树链剖分的主要支持以下操作:将树结点$x$到$y$的最短路径上所有结点加权查询树结点$x$到$y$的最短路径上所有结点的权值总和将以$x$为根的子树内所有结点加权查询以$x$......
  • Static Query on Tree (述链剖分+线段树)(2022杭电多校)
    题意:给定一棵树,nn 个结点。根为 11,所有的结点只能走向其父亲结点。有 qq 次询问,每次询问给出 33 个结点集合 A,B,CA,B,C。问树上有多少点满足如下条件:该点可以......
  • 树链剖分,树剖
    树剖是把一棵树拆成一堆链,\(O(logn)\)地跳链,用一些数据结构维护每条链,从而实现增加1k代码而降低复杂度到\(O(log^2n)\)的效果。树链剖分大概分三种:长链剖分,实链剖分和重链......
  • 长链剖分以及对剖分的理解
    https://www.cnblogs.com/maoyiting/p/14178833.html#/cnblog/works/article/14178833目前接触到的重链剖分,长链剖分,实链剖分里面都有一些共同的性质吧!比如,每个点仅存在......
  • CF609E Minimum spanning tree for each edge 【最小生成树+树链剖分】
    CF609EMinimumspanningtreeforeachedge题目描述给你\(n\)个点,\(m\)条边,如果对于一个最小生成树中要求必须包括第\(i(1\lei\lem)\)条边,那么最小生成树的......
  • 树链剖分
    一.写在文前前置芝士:线段树,另外可能学了LCA会更好理解一点树链剖分的板子就是基于线段树哒!不会的读者先去学习它再来看下面的部分叭!qwq先阅读下板子题叭!二.一些有用的......
  • 基础长链剖分
    基础长链剖分基本上整个互联网上长链剖分都是使用CF1009F和树上\(k\)级祖先两题。本篇也无法避免qwq,因为这两题确实经典。定义定义重儿子表示其子节点中子树深度......
  • LCA 相关 && 树链剖分
    LCA基本定义:最近公共祖先简称LCA(LowestCommonAncestor)。两个结点的最近公共祖先,就是这两个点的公共祖先里面,离根最远的那个。简单来讲,就是两个点到根的路径上,深度最深......