首页 > 其他分享 >MIMO-OFDM-Based Massive Connectivity With Frequency Selectivity Compensation

MIMO-OFDM-Based Massive Connectivity With Frequency Selectivity Compensation

时间:2023-07-18 15:24:50浏览次数:42  
标签:right mathbf OFDM times Selectivity th Based ldots left

System Model

MIMO-OFDM-Based Grant-free NOMA Model

The allocated bandwidth is used to support \(K\) single-antenna devices to randomly access an \(M\)-antenna base station (BS).

In each time instance, only a small subset of devices are active. To characterize such sporadic transmission, the device activity is described by an indicator function \(\alpha_k\) as

\[\alpha_{k}=\left\{\begin{array}{l} 1, \text { device } k \text { is active } \\ 0, \text { device } k \text { is inactive, } \end{array} \quad k=1, \ldots, K\right. \]

with \(p(\alpha_k = 1) = \lambda\) where \(\lambda\ll1\).

We adopt a multi-path block-fading channel (the multi-path channel response remain constant within the coherence time). Denote the channel frequency response on the \(n\)-th subcarrier from the \(k\)-th device at \(m\)-th BS antenna by

\[\begin{aligned} g_{k, m, n}= & \sum_{l=1}^{L_{k}} \sqrt{\rho_{k, l}} \beta_{k, m, l} e^{-j 2 \pi \Delta f \tau_{k, l} n}, \\ & k=1, \ldots, K ; m=1, \ldots, M ; n=1, \ldots, N \end{aligned} \]

where \(\Delta f\) is the OFDM subcarrier spacing; \(L_k\) is the number of channel taps of the \(k\)-th device; \(\rho_{k,l}\) and \(\tau_{k,l}\) are respectively the \(l\)-th tap power and tap delay of the \(k\)-th device; \(\beta_{k, m, l} \sim \mathcal{C} \mathcal{N}\left(\beta_{k, m, l} ; 0,1\right)\) is the normalized complex gain and assumed to be independent for any \(k,m,l\).

The channel frequency response can be expressed in a matrix form as

\[\mathbf{G}_{k}=\alpha_{k}\left(\begin{array}{ccccc} g_{k, 1,1} & \cdots & g_{k, m, 1} & \cdots & g_{k, M, 1} \\ \vdots & & \vdots & & \vdots \\ g_{k, 1, N} & \cdots & g_{k, m, N} & \cdots & g_{k, M, N} \end{array}\right) \]

Let \(a^{(t)}_{k,n}\) be the pilot symbol of the \(k\)-th device transmitted on th \(n\)-th subcarrier at the \(t\)-th OFDM symbol, and \(T\) be the number of OFDM symbols for pilot transmission. Then
we construct a block diagonal matrix $\Lambda_k\in \mathbb{C}^{TN\times N} $ with the \(n\)-th diagonal block being \([a^{(1)}_{k,n},...,a^{(T)}_{k,n}]\) , i.e.,

\[\boldsymbol{\Lambda}_{k}=\operatorname{diag}\left(\left[a_{k, 1}^{(1)}, \ldots, a_{k, 1}^{(T)}\right]^{T}, \ldots,\left[a_{k, N}^{(1)}, \ldots, a_{k, N}^{(T)}\right]^{T}\right) \]

Assume the cyclic-prefix (CP) length \(L_{cp} \ge \tau_{k,l}, \forall k,l\). After removing the CP and applying the discrete Fourier transform (DFT), the system model in the frequency domain is described as

\[\mathbf{Y}=\sum_{k=1}^{K} \boldsymbol{\Lambda}_{k} \mathbf{G}_{k}+\mathbf{N} \]

where \(Y \in \mathbb{C}^{TN\times N}\) is the observation matrix; \(N\) is an additive white Gaussian noise (AWGN) matrix with its elements independently drawn from \(\mathcal{C} \mathcal{N}(0,\sigma^2)\).

Define the time-domain channel matrix of the \(k\)-th device as \(\tilde{H}_k\in \mathbb{C}^{N\times M}\). Note that \(\tilde{H}_k\) can be represented as the IDFT of \(G_k\), i.e,

\[\tilde{H}_k=F^HG_k \]

where \(F \in \mathbb{C}^{N\times N}\) is the DFT matrix. Similarly, \(G_k=F\tilde{H}\).

\[\begin{aligned} \mathbf{Y} & =\sum_{k=1}^{K} \boldsymbol{\Lambda}_{k} \mathbf{F} \tilde{\mathbf{H}}_{k}+\mathbf{N} \\ & =\left[\boldsymbol{\Lambda}_{1} \mathbf{F}, \ldots, \boldsymbol{\Lambda}_{K} \mathbf{F}\right] \tilde{\mathbf{H}}+\mathbf{N} \end{aligned} \]

where \(\tilde{H}=[\tilde{H}^T_1,...\tilde{H}^T_K]^T\) is the channel matrix in the time domain.

Proposed Block-Wise Linear System Model

We divide the \(N\) continuous subcarriers into \(Q\) subblocks. In each sub-block \(q\), a linear function is used as the approximation of the channel frequency response:

\[\begin{array}{r} g_{k, n_{q}, m}=h_{k, q, m}+\left(n_{q}-l_{q}\right) c_{k, q, m}+\Delta_{k, n_{q}, m} \\ n_{q}=(q-1) N / Q+1, \ldots, q N / Q \end{array} \]

where \(h_{k,q,m}\) and \(c_{k,q,m}\) represent the mean and slope of the linear function in the \(q\)-th sub-block, respectively; \(\Delta_{k,n_q,m}\) is the error term due to model mismatch; and \(l_q=(q-\frac{1}{2})N/Q\) is the midpoint of \(n_q\).

For the \(k\)-th device, we define the matrix \(H_k \in \mathbb{C}^{Q\times N}\) and \(C_k\in \mathbb{C}^{Q\times N}\) as

\[\mathbf{H}_{k}=\alpha_{k}\left(\begin{array}{ccccc} h_{k, 1,1} & \cdots & h_{k, 1, m} & \cdots & h_{k, 1, M} \\ \vdots & & \vdots & & \vdots \\ h_{k, Q, 1} & \cdots & h_{k, Q, m} & \cdots & h_{k, Q, M} \end{array}\right) \]

\[\mathbf{C}_{k}=\alpha_{k}\left(\begin{array}{ccccc} c_{k, 1,1} & \cdots & c_{k, 1, m} & \cdots & c_{k, 1, M} \\ \vdots & & \vdots & & \vdots \\ c_{k, Q, 1} & \cdots & c_{k, Q, m} & \cdots & c_{k, Q, M} \end{array}\right) \]

Define \(\mathbf{E}_{1}=\operatorname{diag}\left(\mathbf{1}_{N / Q}, \ldots, \mathbf{1}_{N / Q}\right) \in \mathbb{R}^{N \times Q}\) with \(\mathbf{1}_{N / Q}\) being an all-one vector of length \(N/Q\) and \(E2=\operatorname{diag}(\mathbf{d}, \ldots, \mathbf{d}) \in \mathbb{R}^{N \times Q}\) with \(\mathbf{d}=\left[-\frac{N}{2 Q}+1, \ldots, \frac{N}{2 Q}\right]^{T}\). Then
the block-wise linear approximation of the channel frequency response \(G_k\) is given by

\[\mathbf{G}_{k}=\mathbf{E}_{1} \mathbf{H}_{k}+\mathbf{E}_{2} \mathbf{C}_{k}+\Delta_{k} \]

where \(\Delta_k \in \mathbb{C}^{N \times Q}\) is the error matrix. Substituting (11) into (5), we obtain the block-wise linear system model as

\[\mathbf{Y}=\mathbf{A H}+\mathbf{B C}+\mathbf{W} \]

where \(\mathbf{A}=\left[\boldsymbol{\Lambda}_{1} \mathbf{E}_{1}, \ldots, \boldsymbol{\Lambda}_{K} \mathbf{E}_{1}\right] \in \mathbb{C}^{T N \times Q K}\) and \(B=\left[\boldsymbol{\Lambda}_{1} \mathbf{E}_{2}, \ldots, \boldsymbol{\Lambda}_{K} \mathbf{E}_{2}\right] \in \mathbb{C}^{T N \times Q K}\) are the pilot matrices; \(H=\left[\mathbf{H}_{1}^{T}, \ldots, \mathbf{H}_{K}^{T}\right]^{T} \in \mathbb{C}^{Q K \times M}\) is the channel mean matrix; \(\mathbf{C}=\left[\mathbf{C}_{1}^{T}, \ldots, \mathbf{C}_{K}^{T}\right]^{T} \in \mathbb{C}^{Q K \times M}\) is the channel compensation matrix; \(W\) is the summation of the AWGN and the error terms from model mismatch as

\[\mathbf{W}=\sum_{k=1}^{K} \boldsymbol{\Lambda}_{k} \boldsymbol{\Delta}_{k}+\mathbf{N} \]

标签:right,mathbf,OFDM,times,Selectivity,th,Based,ldots,left
From: https://www.cnblogs.com/Tarjan-Zeng/p/17561257.html

相关文章

  • Unified Conversational Recommendation Policy Learning via Graph-based Reinforcem
    图的作用:图结构捕捉不同类型节点(即用户、项目和属性)之间丰富的关联信息,使我们能够发现协作用户对属性和项目的偏好。因此,我们可以利用图结构将推荐和对话组件有机地整合在一起,其中对话会话可以被视为在图中维护的节点序列,以动态地利用对话历史来预测下一轮的行动。由四个主要组......
  • baseDao.selectOne 怎么会返回多条数据,如何处理。。。
    名称是selectOne,但有多条数据满足条件的时候,会返回多条数据。解决方法:加上.last("limit1")StringtodayStart=DateUtils.getTodayStartTime();StringtodayEnd=DateUtils.getTodayEndTime();QueryWrapper<OrderEntity>wrapper=newQuer......
  • 【Netty】「优化进阶」(二)浅谈 LengthFieldBasedFrameDecoder:如何实现可靠的消息分割?
    前言本篇博文是《从0到1学习Netty》中进阶系列的第二篇博文,主要内容是通过不同的应用案例来了解LengthFieldBasedFrameDecoder是如何处理不同的消息,实现自动分割,往期系列文章请访问博主的Netty专栏,博文中的所有代码全部收集在博主的GitHub仓库中;介绍LengthFieldBasedFrameDe......
  • Effective Diversity in Population-Based Reinforcement Learning
    发表时间:2020(NeurIPS2020)文章要点:这篇文章提出了DiversityviaDeterminants(DvD)算法来提升种群里的多样性。之前的方法通常都考虑的两两之间的距离,然后设计一些指标或者加权来增加种群多样性,这种方式容易出现cycling,也就是类似石头剪刀布的循环克制的关系,造成训练不上去,......
  • 【论文阅读】CrossFormer: A Versatile Vision Transformer Based on Cross-scale Att
    来自CVPR2021论文地址:https://link.zhihu.com/?target=https%3A//arxiv.org/pdf/2108.00154.pdf代码地址:https://link.zhihu.com/?target=https%3A//github.com/cheerss/CrossFormer一、Motivation 主要还是ViT的历史遗留问题ViT在处理输入时,将图片划分为了相等大小的图像......
  • Paper Reading: Model-Based Synthetic Sampling for Imbalanced Data
    目录研究动机文章贡献本文方法训练特征模型生成临时采样数据生成最终的合成数据实验结果数据集和实验设置实验结果消融实验结果可视化和集成学习相结合对非线性特征模型的影响特征关系对合成样本的影响优点和创新点PaperReading是从个人角度进行的一些总结分享,受到个人关注点的......
  • Netty-LengthFieldBasedFrameDecoder-解决拆包粘包问题的解码器
    LengthFieldBasedFrameDecoder的构造器参数中包括:maxFrameLength:指定解码器所能处理的数据包的最大长度,超过该长度则抛出TooLongFrameException异常。lengthFieldOffset:指定长度字段的起始位置。lengthFieldLength:指定长度字段的长度。lengthAdjustment:指定长度字段所表示......
  • Spectrum Random Masking for Generalization in Image-based Reinforcement Learning
    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! ......
  • KEDA — Kubernetes Based Event Driven Auto scaling(转载)
    原文:https://itnext.io/keda-kubernetes-based-event-driven-autoscaling-48491c79ec74  Event-drivencomputingishardlyanewidea;peopleinthedatabaseworldhaveuseddatabasetriggersforyears.Theconceptissimple:wheneveryouadd,change,orde......
  • matlab调制解调 OFDM OTFS 16qam qpsk ldpc turbo在高斯白噪声,频率选择性衰落信道下
    matlab调制解调 OFDMOTFS16qamqpskldpcturbo在高斯白噪声,频率选择性衰落信道下的误比特率性能仿真,matlab代码OFDMsimulink 包括添加保护间隔(cp),信道均衡(ZFMMSEMRCMALMSEE)代码每行都有注释,适用于学习,附带仿真说明,完全不用担心看不懂原创文章,转载请说明出处,资料来......