首页 > 其他分享 >Unified Conversational Recommendation Policy Learning via Graph-based Reinforcement Learning

Unified Conversational Recommendation Policy Learning via Graph-based Reinforcement Learning

时间:2023-07-17 23:00:22浏览次数:41  
标签:Conversational Unified task knowledge MTL specific tasks Learning

图的作用:

图结构捕捉不同类型节点(即用户、项目和属性)之间丰富的关联信息,使我们能够发现协作用户对属性和项目的偏好。因此,我们可以利用图结构将推荐和对话组件有机地整合在一起,其中对话会话可以被视为在图中维护的节点序列,以动态地利用对话历史来预测下一轮的行动。

由四个主要组件组成:基于图的 MDP 环境、图增强状态表示学习、动作选择策略和深度 Q 学习网络。

Multi-Task Learning in Recommender Systems.

As stated in [52], Multi-Task Learning (MTL) is a machine learning framework that learns a task-invariant representation of an input data in a bottom network, while each individual task is solved in one's respective task-specific network and boosted by the knowledge transfer across tasks. Recently, MTL has received increasing interest in recommender systems [17, 28, 31, 36, 37] due to its ability to share knowledge among different tasks especially its ability to capture heterogeneous user behaviors. A series of works seek to improve on it by designing different types of shared layer architectures. These works either introduce constraints on task-specific parameters \([12,33,49]\) or separate the shared and the task-specific parameters \([30,46]\). The general idea is to disentangle and share knowledge through the representation of the input feature. Additionally, there is also research on applying multi-agent \(\mathrm{RL}\) for the multi-scenario setting [13] where the recommendation task is bundled with other tasks like search, and target advertising. Different from the above ideas, we resort to knowledge distillation to transfer ranking knowledge across tasks on task-specific networks and we combine RL to improve the long-term satisfaction of users. Notably, our model is a general framework and could be leveraged as an extension for most off-the-shelf MTL models.

标签:Conversational,Unified,task,knowledge,MTL,specific,tasks,Learning
From: https://www.cnblogs.com/tuyuge/p/17561535.html

相关文章

  • 粗读Multi-Task Recommendations with Reinforcement Learning
    论文:Multi-TaskRecommendationswithReinforcementLearning地址:https://arxiv.org/abs/2302.03328摘要Inrecentyears,Multi-taskLearning(MTL)hasyieldedimmensesuccessinRecommenderSystem(RS)applications[41].However,currentMTL-basedrecommendati......
  • Learning hard C#学习笔记——读书笔记 03
    C#是面向对象的语言,每次到这里就会有一个问题,什么是对象,其实一句话就可以解释,那就是——万物皆是对象,这句话就像“如来”一样抽象,其实,我们无须在这上面耗费太大的精力,我们随着学习的深入,对象的概念自然会深入到脑海中所有面向对象的编程语言都有以下三个基础特征封装——把客......
  • Learning hard C#学习笔记——读书笔记 02
    每每说到类,不得不介绍的就是类的定义,它是一个抽象的概念,它是一个模板,制造对象的模板1.定义一个类classPreson{//类的成员变量}默认情况下,class关键字没有显式的使用internal修饰符来定义类,但是没有必要这样做,默认的修饰符就是internal除了internal这个权限修饰......
  • #Deeplearning#人工智能导论学习笔记
    神经网络基础线性函数(得分函数)计算每个类别的得分:每个像素点都会影响结果(像素点的权重参数)f(image,parameters)每个像素点都需要有一个权重,每个像素点会按RGB拆分成三个矩阵中的元素单行矩阵(每个像素点的权重)x像素点(所有像素点)=1x1矩阵(得分)f(x,W)=Wx+b简而言之,就是每......
  • deeplearning4j训练MNIST数据集以及验证
    训练模型官方示例MNIST数据下载地址:http://github.com/myleott/mnist_png/raw/master/mnist_png.tar.gzGitHub示例地址:https://github.com/deeplearning4j/deeplearning4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/quickstart/model......
  • LizRice--Learning EBPF
    主要参考LizRice主讲的youtube视频:https://www.youtube.com/watch?v=TJgxjVTZtfw这里做lab记录,持续更新ing线上实验环境:https://play.instruqt.com/isovalent/invite/miht6dgdosp0/tracks/tutorial-getting-started-with-ebpf/电子书(需要公司邮箱认证)https://isovalent.com......
  • FastReport 在C#中的应用-Learning_1
    1.报表模板设计2.c#代码usingFastReport;usingOracle.ManagedDataAccess.Client;usingSunny.UI;usingSystem;usingSystem.Data;usingSystem.Windows.Forms;namespaceWinPrint{publicpartialclassForm1:UIForm{privateDataSetds=nul......
  • iOS MachineLearning 系列(3)—— 静态图像分析之区域识别
    iOSMachineLearning系列(3)——静态图像分析之区域识别本系列的前一篇文章介绍了如何使用iOS中自带的API对图片中的矩形区域进行分析。在图像静态分析方面,矩形区域分析是非常基础的部分。API还提供了更多面向应用的分析能力,如文本区域分析,条形码二维码的分析,人脸区域分析,人体分析......
  • Exploiting Noise as a Resource for Computation and Learning in Spiking Neural Ne
    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布!https://arxiv.org/abs/2305.16044 Summary Keywords Introduction  ResultsNoisyspikingneuralnetworkandnoise-drivenlearning NSNNleadstohigh-performancespikingneuralmodels NSNN......
  • The Deep Learning Compiler: A Comprehensive Survey
    TheDeepLearningCompiler:AComprehensiveSurveyAI编译器综述摘要介绍背景深度学习框架深度学习硬件DL编译器设计体系DL编译器的关键组成High-levelIRgraphIR表示GraphIR的实现,包括数据和算子的管理小结Low-levelIRLow-levelIR的实现Low-level......