首页 > 其他分享 >强化学习:基于蒙特卡洛树和策略价值网络的深度强化学习五子棋(含码源)

强化学习:基于蒙特卡洛树和策略价值网络的深度强化学习五子棋(含码源)

时间:2023-07-15 23:44:24浏览次数:57  
标签:num 五子棋 state 含码源 chess conf 强化 data id

强化学习:基于蒙特卡洛树和策略价值网络的深度强化学习五子棋(含码源)

  • 特点

    • 自我对弈
    • 详细注释
    • 流程简单
  • 代码结构

    • net:策略价值网络实现
    • mcts:蒙特卡洛树实现
    • server:前端界面代码
    • legacy:废弃代码
    • docs:其他文件
    • utils:工具代码
    • network.py:移植过来的网络结构代码
    • model_5400.pkl:移植过来的网络训练权重
    • train_agent.py:训练脚本
    • web_server.py:对弈服务脚本
    • web_server_demo.py:对弈服务脚本(移植网络)

1.1 流程

1.2策略价值网络

采用了类似ResNet的结构,加入了SPP模块。

(目前,由于训练太耗时间了,连续跑了三个多星期,才跑了2000多个自我对弈的棋谱,经过实验,这个策略网络的表现,目前还是不行,可能育有还没有训练充分)

同时移植了另一个开源的策略网络以及其训练权重(network.py、model_5400.pkl),用于进行仿真演示效果。

1.3 训练

根据注释调整train_agent.py文件,并运行该脚本

部分代码展示:


if __name__ == '__main__':

    conf = LinXiaoNetConfig()
    conf.set_cuda(True)
    conf.set_input_shape(8, 8)
    conf.set_train_info(5, 16, 1e-2)
    conf.set_checkpoint_config(5, 'checkpoints/v2train')
    conf.set_num_worker(0)
    conf.set_log('log/v2train.log')
    # conf.set_pretrained_path('checkpoints/v2m4000/epoch_15')

    init_logger(conf.log_file)
    logger()(conf)

    device = 'cuda' if conf.use_cuda else 'cpu'

    # 创建策略网络
    model = LinXiaoNet(3)
    model.to(device)

    loss_func = AlphaLoss()
    loss_func.to(device)

    optimizer = torch.optim.SGD(model.parameters(), conf.init_lr, 0.9, weight_decay=5e-4)
    lr_schedule = torch.optim.lr_scheduler.StepLR(optimizer, 1, 0.95)

    # initial config tree
    tree = MonteTree(model, device, chess_size=conf.input_shape[0], simulate_count=500)
    data_cache = TrainDataCache(num_worker=conf.num_worker)

    ep_num = 0
    chess_num = 0
    # config train interval
    train_every_chess = 18

    # 加载检查点
    if conf.pretrain_path is not None:
        model_data, optimizer_data, lr_schedule_data, data_cache, ep_num, chess_num = load_checkpoint(conf.pretrain_path)
        model.load_state_dict(model_data)
        optimizer.load_state_dict(optimizer_data)
        lr_schedule.load_state_dict(lr_schedule_data)
        logger()('successfully load pretrained : {}'.format(conf.pretrain_path))

    while True:
        logger()(f'self chess game no.{chess_num+1} start.')
        # 进行一次自我对弈,获取对弈记录
        chess_record = tree.self_game()
        logger()(f'self chess game no.{chess_num+1} end.')
        # 根据对弈记录生成训练数据
        train_data = generate_train_data(tree.chess_size, chess_record)
        # 将训练数据存入缓存
        for i in range(len(train_data)):
            data_cache.push(train_data[i])
        if chess_num % train_every_chess == 0:
            logger()(f'train start.')
            loader = data_cache.get_loader(conf.batch_size)
            model.train()
            for _ in range(conf.epoch_num):
                loss_record = []
                for bat_state, bat_dist, bat_winner in loader:
                    bat_state, bat_dist, bat_winner = bat_state.to(device), bat_dist.to(device), bat_winner.to(device)
                    optimizer.zero_grad()
                    prob, value = model(bat_state)
                    loss = loss_func(prob, value, bat_dist, bat_winner)
                    loss.backward()
                    optimizer.step()
                    loss_record.append(loss.item())
                logger()(f'train epoch {ep_num} loss: {sum(loss_record) / float(len(loss_record))}')
                ep_num += 1
                if ep_num % conf.checkpoint_save_every_num == 0:
                    save_checkpoint(
                        os.path.join(conf.checkpoint_save_dir, f'epoch_{ep_num}'),
                        ep_num, chess_num, model.state_dict(), optimizer.state_dict(), lr_schedule.state_dict(), data_cache
                    )
            lr_schedule.step()
            logger()(f'train end.')
        chess_num += 1
        save_chess_record(
            os.path.join(conf.checkpoint_save_dir, f'chess_record_{chess_num}.pkl'),
            chess_record
        )
        # break

    pass

1.4 仿真实验

根据注释调整web_server.py文件,加载所用的预训练权重,并运行该脚本

浏览器打开网址:http://127.0.0.1:8080/ 进行对弈

部分代码展示

# 用户查询机器落子状态
@app.route('/state/get/<state_id>', methods=['GET'])
def get_state(state_id):
    global state_result
    state_id = int(state_id)
    state = 0
    chess_state = None
    if state_id in state_result.keys() and state_result[state_id] is not None:
        state = 1
        chess_state = state_result[state_id]
        state_result[state_id] = None
    ret = {
        'code': 0,
        'msg': 'OK',
        'data': {
            'state': state,
            'chess_state': chess_state
        }
    }
    return jsonify(ret)


# 游戏开始,为这场游戏创建蒙特卡洛树
@app.route('/game/start', methods=['POST'])
def game_start():
    global trees
    global model, device, chess_size, simulate_count
    tree_id = random.randint(1000, 100000)
    trees[tree_id] = MonteTree(model, device, chess_size=chess_size, simulate_count=simulate_count)
    ret = {
        'code': 0,
        'msg': 'OK',
        'data': {
            'tree_id': tree_id
        }
    }
    return jsonify(ret)


# 游戏结束,销毁蒙特卡洛树
@app.route('/game/end/<tree_id>', methods=['POST'])
def game_end(tree_id):
    global trees
    tree_id = int(tree_id)
    trees[tree_id] = None
    ret = {
        'code': 0,
        'msg': 'OK',
        'data': {}
    }
    return ret


if __name__ == '__main__':
    app.run(
        '0.0.0.0',
        8080
    )

1.5 仿真实验(移植网络)

运行脚本:python web_server_demo.py

浏览器打开网址:http://127.0.0.1:8080/ 进行对弈

码源链接见文末

码源链接

更多优质内容请关注公号&知乎:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

标签:num,五子棋,state,含码源,chess,conf,强化,data,id
From: https://www.cnblogs.com/ting1/p/17557247.html

相关文章

  • 强化学习Chapter2——优化目标(2)
    强化学习Chapter2——优化目标(2)上文推导出强化学习的一般性目标,即不做确定性假设下的优化目标,得到了下面两个式子:\[P(\tau|\pi)=\rho_0(s_0)\prod^{T-1}_{t=0}P(s_{t+1}|s_t,a_t)\pi(a_t|s_t)\\J(\pi)=\int_\tauP(\tau|\pi)R(\tau)=E_{\tau\sim\pi}[R(\tau)]\]我们的目标就......
  • 强化学习Chapter2——优化目标(1)
    强化学习Chapter2——优化目标(1)上节涉及强化学习基本思路以及利用数学方式表征强化学习,但对强化学习的目标并没有进行详尽的定义。本节的目标旨在介绍algorithm-free的优化目标,即本文将不涉及算法地详述强化学习的目标。强化学习一般性目标上文提到,强化学习的目标可以解释为:......
  • m基于强化学习的永磁同步电机位置控制器simulink仿真,对比传统的PI控制器和模糊PI控制
    1.算法仿真效果MATLAB2017b仿真结果如下:      2.算法涉及理论知识概要       永磁同步电机(PermanentMagnetSynchronousMotor,PMSM)是一种高效、精度高、响应速度快的电机,广泛应用于现代工业和民用领域。PMSM的位置控制是PMSM控制的核心问题之一,其优化控......
  • 强化学习算法,DDPG算法,在simulink或MATLAB中编写强化学习算法,基于强化学习的自适应pid,
    强化学习算法,DDPG算法,在simulink或MATLAB中编写强化学习算法,基于强化学习的自适应pid,基于强化学习的模型预测控制算法,基于RL的MPC,Reinforcementlearning工具箱,具体例子的编程。根据需求进行算法定制:1.强化学习DDPG与控制算法MPC,鲁棒控制,PID,ADRC的结合。2.基于强化学习DDPG的机械......
  • 基于策略的深度强化学习
     策略函数,输入为状态,输出动作a对应的概率。   利用神经网络去近似一个概率函数 softmax函数使概率加和等于1且都为正数。 Qπ用来评价在状态s下作出动作a的好坏程度,与策略函数π有关。 状态价值函数V,只与当前状态s有关 将策略函数π替换为神经网络 用梯......
  • 强化学习实践:Policy Gradient-Cart pole游戏展示
    摘要:智能体agent在环境environment中学习,根据环境的状态state(或观测到的observation),执行动作action,并根据环境的反馈reward(奖励)来指导更好的动作。本文分享自华为云社区《强化学习从基础到进阶-案例与实践[5.1]:PolicyGradient-Cartpole游戏展示》,作者:汀丶。强化学习......
  • Android架构开发进阶指南,Android Jetpack Compose强化实战
    在我们日常的开发中,如果所有人各自为战,没有统一规范,久而久之,项目代码会变得混乱且后续难以维护。而这时,许多人就会使用Jetpack这个由多个库组成的套件,来减少样板代码,以便将精力更多的集中于重要的编码工作上面。统一的架构模式通常会给我们带来诸多好处,如:统一开发规范,使得代码整洁......
  • 强化学习从基础到进阶-常见问题和面试必知必答[7]:深度确定性策略梯度DDPG算法、双延迟
    强化学习从基础到进阶-常见问题和面试必知必答[7]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解1.核心词汇深度确定性策略梯度(deepdeterministicpolicygradient,DDPG):在连续控制领域经典的强化学习算法,是深度Q网络在处定性”表示其输出的是一个确定的动作,......
  • 强化学习从基础到进阶--案例与实践[7.1]:深度确定性策略梯度DDPG算法、双延迟深度确定
    强化学习从基础到进阶--案例与实践[7.1]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解项目实战1、定义算法1.1定义模型!pipuninstall-yparl!pipinstallparlimportparlimportpaddleimportpaddle.nnasnnimportpaddle.nn.functionalasFcl......
  • 强化学习从基础到进阶-常见问题和面试必知必答[7]:深度确定性策略梯度DDPG算法、双延迟
    强化学习从基础到进阶-常见问题和面试必知必答[7]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解1.核心词汇深度确定性策略梯度(deepdeterministicpolicygradient,DDPG):在连续控制领域经典的强化学习算法,是深度Q网络在处定性”表示其输出的是一个确定的动作,可......