首页 > 其他分享 >高等数学——高阶导数

高等数学——高阶导数

时间:2023-07-12 17:34:31浏览次数:39  
标签:right frac 导数 mu dx dy 高等数学 高阶 left

高阶导数

\(y=x^{3}\)

\(y'=3x^{2}\)

\(y''=6x\)

\(y'''=6\)

\[y'=\frac{dy}{dx} \]

\[y''=\frac{d}{dx}\left(\frac{dy}{dx}\right)=\frac{d(\frac{dy}{dx})}{dx} \]

\[y''=\frac{d^{2}y}{dx^{2}} \]

\[y'''=\frac{d}{dx}[\frac{d}{dx}\left(\frac{dy}{dx}\right)]=\frac{d}{dx} \left(\frac{d^{2}y}{dx^{2}}\right)=\frac{d^{3}y}{dx^{3}} \]

\[y^{(4)},y^{(5)},\dots,y^{(n)} \]

\[(x^{\mu})^{(n)}=\mu(\mu-1)\times \dots \times(\mu-n+1)x^{\mu-n} \]

\[(u+v)^{n}=\sum_{k=0}^{n}C_{n}^{k}u^{n-k}v^{k} \]

\[(uv)^{(n)}=\sum_{k=0}^{n}C_{n}^{k}u^{(n-k)}v^{(k)} \]

上面两个公式可以联系一下,展开后的形式都是一样的。

标签:right,frac,导数,mu,dx,dy,高等数学,高阶,left
From: https://www.cnblogs.com/Multitree/p/17548300.html

相关文章

  • 高等数学——求导法则
    求导法则和差积商\[[u(x)\pmv(x)]'=u'(x)\pmv'(x)\]\[[u(x)\cdotv(x)]'=u'(x)v(x)+u(x)v'(x)\]\[[\frac{u(x)}{v(x)}]=\frac{u'(x)v(x)-u(x)v'(x)}{v^{2}(x)}(v(x)\ne0)\]\[[u(x)v(x)w(x)]'=u(x)'v(x)w(x)+u......
  • 高等数学——导数几何意义,可导性与连续性
    导数的几何含义可导的几何含义:图像光滑(图像切线不能垂直于\(x\)轴)。因为带尖的左右求导不相等。导数的几何含义:某一点的导数就是过这个点与函数图像相切的直线的斜率。\(f'(x_{0})=\tan\alpha\).设\(M(x_{0},y_{0})\)切线方程\(y-y_{0}=f'(x_{0})(x-x_{0})\)。法线:与......
  • 高等数学——导数定义
    导数定义物体运动的速度:非匀速。运动的距离:\(f(t)-f(t_{0})\)从\(t\)到\(t_{0}\)的平均速度:\[\lim_{t\tot_{0}}\frac{f(t)-f(t_{0})}{t-t_{0}}=v\]\(y=f(x)\)在\(x_{0}\)的领域内有定义,在\(x\)处取一个增量\(\Deltax\),\(\Deltay=f(x_{0}+\Deltax)-f(x_{0})\)......
  • 高等数学——函数的连续性和间断点
    函数的连续性增量:设变量\(u\)从他的一个初值\(u_{1}\)变到终值\(u_{2}\),终值与初值的差\(u_{2}-u_{1}\)就叫做变量\(u\)的增量。\[\Deltau=u_{2}-u_{1}\]增量可正可负。函数\(f(x)\)随\(x\)的变化:\[\Deltay=f(x_{0}+\Deltax)-f(x_{0})\]增量都是变化以后的......
  • 高等数学——无穷小的比较
    无穷小的比较趋于\(0\)的速度快慢。定义如果\(\lim\frac{\beta}{\alpha}=0\),那么就说\(\beta\)是比\(\alpha\)高阶的无穷小,记作\(\beta=o(\alpha)\)。如果\(\lim\frac{\beta}{\alpha}=\infty\),那么就说\(\beta\)是比\(\alpha\)低阶的无穷小。如果\(\lim......
  • 高等数学——极限存在准则,两个重要极限
    极限存在准则准则1:如果有数列\(\{x_{n}\},\{y_{n}\},\{z_{n}\}\),如果满足:\(\existsn_{0}\in\text{N}\),当\(n>n_{0}\)时,有\(y_{n}\lex_{n}\lez_{n}\);\(\lim_{n\to\infty}y_{n}=a,\lim_{n\to\infty}z_{n}=a\);那么数列\(\{x_{n}\}\)的极限存在,且......
  • 高等数学——无穷大与无穷小
    无穷大和无穷小无穷小无穷小指趋于\(0\),而不是\(-\infty\)。可以从正从负趋于无穷小。定义1如果函数\(f(x)\)当\(x\tox_{0}\)(或\(x\to\infty\))时的极限为\(0\),那么称函数\(f(x)\)为当\(x\tox_{0}\)(或\(x\to\infty\))时的无穷小。\(0\)可以作为无穷小的唯一的......
  • 高等数学——函数的极限
    函数的极限定义\(x\)趋于有限数\(a\)的极限。\[x\toa,f(x)\tob\]\(f(x)\)在\(x_{0}\)的去心领域内有定义(在\(x_{0}\)处可以没有定义)。若\(\existsA,\forall\delta>0,0<|x-x_{0}|<\delta\)时,$|f(x)-A|<\varepsilon$,则:\[\lim_{x\tox_{0}}f(x)=A\t......
  • 高等数学——数列的极限
    数列的极限定义数列:\(x_{1},x_{2},\dots,x_{n},\dots\)是一个从小到大的序列,称为数列,记为\(\{x_{n}\}\)其中\(x_{1}\)叫做项,\(x_{n}\)称为通项(一般项)。数列极限:设\(\{x_{n}\}\)是一个数列,\(\forall\varepsilon>0,\existsN\),使当\(n>N\)时,$|x_{n}-a|<\varepsilon$......
  • 「高等数学」1.1.2 函数
    函数的概念定义:设数集\(D\subset\mathbf{R}\),则称映射\(f:D\rightarrow\mathbf{R}\)为定义在\(D\)上的函数,通常简记为\[y=f(x),x\inD,\]其中\(x\)称为自变量,\(y\)成为因变量,\(D\)称为定义域,记作\(D_f\),即\(D_f=D\).函数的定义中,对于每......