首页 > 其他分享 >易基因: RRBS揭示基于DNA甲基化驱动基因的肾透明细胞癌预后模型的鉴定和验证|项目文章

易基因: RRBS揭示基于DNA甲基化驱动基因的肾透明细胞癌预后模型的鉴定和验证|项目文章

时间:2023-07-04 15:34:04浏览次数:54  
标签:预后 DNA 基因 CpG 甲基化 ccRCC 位点

大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。

肾细胞癌(RCC)是最常见的肾癌亚型,每年超400万例新发病例,是泌尿系统恶性肿瘤导致的第二大死因。2%-70%的RCC为透明细胞RCC(Clear cell renal cell carcinoma,ccRCC)。DNA甲基化(DNA methylation,DNAm)是主要的表观遗传修饰之一,在维持基因转录和基因组稳定性方面具有至关重要的作用。DNAm在ccRCC的发病机制中起着重要作用,许多研究集中于DNAm异常变化与ccRCC预后之间的相关性,但基于DNAm驱动基因的ccRCC预后模型鲜有报道。

2023年6月7日,南方医科大学附属龙华人民医院泌尿外科邓琼研究员等在《BMC Genomics》发表题为“Identification and validation of a DNA methylation-driven gene-based prognostic model for clear cell renal cell carcinoma”的研究论文,该研究以ccRCC患者的DNA为对象,通过简化基因组重亚硫酸盐测序(RRBS)等技术方法,鉴定出ccRCC患者的ccRCC早期诊断和预后的DNA甲基化生物标志物。深圳市易基因科技有限公司为本研究提供RRBS建库测序分析服务。

标题:Identification and validation of a DNA methylation-driven gene-based prognostic model for clear cell renal cell carcinoma(基于DNA甲基化驱动基因的肾透明细胞癌预后模型的鉴定和验证)

时间:2023-06-07

期刊:BMC Genomics

影响因子:IF 4.4

技术平台:RRBS等

摘要:

肾透明细胞癌(ccRCC)是一种形态异质且预后不良的恶性肿瘤。本研究旨在建立DNA甲基化(DNAm)驱动的ccRCC基因预后模型。本研究对ccRCC患者的DNA提取物进行了RRBS测序分析。对10对患者样本的RRBS数据进行分析以筛选候选CpG位点,然后训练并验证18个CpG位点模型,并结合临床特征建立了用于ccRCC预后或风险评估的列线图(Nomogram model)模型。研究在启动子区域鉴定出2261个DMR。经DMR筛选后,共筛选出578个候选基因,与450K芯片中的408个CpG二核苷酸相对应。从TCGA数据集中收集了478个ccRCC样本的DNAm图谱。通过单因素Cox回归、LASSO回归和多因素Cox比例风险回归分析对319个样本的training集进行分析,共鉴定出18个CpG的预后组。结合临床特征构建了预后模型,在测试集(test set,159个样本)和整组(whole set,478个样本)中,Kaplan-Meier曲线差异显著;ROC曲线和生存分析显示AUC>0.7。结合临床病理特征和甲基化风险评分的列线图表现较好,决策曲线分析也显示出有益的效果。

本研究深入了解了高甲基化在ccRCC中的作用。鉴定出的靶标可作为ccRCC早期诊断和预后判断的生物标志物。本研究对更好的风险分层和个性化治疗具有重要意义。

 

研究结果

(1)RRBS质控结果

表3:C和CpG位点甲基化和比对

 

表4:CG、CHG、CHH平均甲基化水平(>1X深度)

 

图1:样本间全基因组甲基化差异。

  1. 样本中CpG甲基化水平相关性。较大的圆形区域和较深的颜色表示高相关性。
  2. 聚类树状图。根据欧几里得距离,使用R.Ward.d2的hclust函数对样本进行聚类。选择最小方差方法作为聚类方法

 

(2)DMR鉴定

图2:DMR分析

  1. 平均甲基化差异。X轴代表甲基化差异。负值表示低甲基化。正值表示高甲基化。Y轴表示相应横坐标的DMR数量。
  2. DMR甲基化分布密度。X轴代表Ca组中的DMR甲基化水平;Y轴代表对照组中的DMR甲基化水平。DMR密度从低到高(白色到红色)。
  3. DMR在基因元件上的分布

 

(3)ccRCC预后模型构建

图3:差异甲基化CpG(differentially methylated CpG,dmCpG)位点鉴定。

A、 使用调谐参数(lambda)对CpG位点进行LASSO回归分析。

B、 蛋白质-蛋白质互作。

C、 18个dmCpG位点的DisGeNet疾病富集分析。

D、 18个dmCpG位点的GO富集分析

表5:预后模型中18个CpG位点的注释

 

(4)预后模型的Training

图4:training集中的风险评分

  1. 高风险组和低风险组患者的KM生存曲线。数据显示为四分位间距的中位数。使用Log-rank检验评估统计学显著性。虚线显示50%生存概率的显著性。
  2. 计算高风险和低风险患者的风险评分和生存状态等级。虚线显示区分ccRCC高风险和低风险患者的临界值。
  3. C.18个CpG位点甲基化水平热图。
  4. 风险评分的1年、3年、5年和10年ROC曲线。以临界值决定该模型的敏感性和特异性

图5:test集中的风险评分

 

(5)预后模型的验证

图6:基于预后模型和临床特征的列线图

预后模型和临床特征的单因素(A)和多因素(B)回归分析。(C)预测ccRCC患者1年、3年、5年和10年生存时间概率列线图

图7:模型校准和ROC评估

  1. 高风险组和低风险组患者的KM生存曲线。
  2. 预测ccRCC患者1年、3年、5年和10年总生存期(OS)的列线图。

C-F. 1年(C)、3年(D)、5年(E)、10年(F)的临床病理特征(绿色,与肿瘤分期诊断、年龄和肿瘤组织学分级相结合),RiskScore(红色)和NomoScore(黑色)的ROC曲线

 

结论

本研究分析了患者样本中的RRBS数据以筛选原始候选CpG位点,然后利用TCGA-KIRC数据训练和验证了18个CpG位点模型,并结合临床特征建立了用于ccRCC预后或风险评估的列线图模型。

基于该结果,研究开发并验证了这种新型预后模型是一种实用、可靠的ccRCC患者预后工具。本研究结果支持异常DNAm变化与肿瘤发生密切相关的观点,并为ccRCC提供了潜在的新型预后生物标志物,对更好的风险分层和个性化治疗具有重要意义。

 

关于易基因简化基因组甲基化测序研究解决方案

简化甲基化测序(Reduced Representation Bisulfite Sequencing,RRBS)是利用限制性内切酶对基因组进行酶切,富集启动子及CpG岛等重要的表观调控区域并进行重亚硫酸盐测序。该技术显著提高了高CpG区域的测序深度,在CpG岛、启动子区域和增强子元件区域可以获得高精度的分辨率,是一种准确、高效、经济的DNA甲基化研究方法,在大规模临床样本的研究中具有广泛的应用前景。

为适应科研技术的需要,易基因进一步开发了可在更大区域内捕获CpG位点的双酶切RRBS(dRRBS),可研究更广泛区域的甲基化,包括CGI shore等区域。

为助力适用低起始量DNA样本(5ng)量多维度甲基化分析,易基因开发了富集覆盖CpG岛、启动子、增强子、CTCF结合位点的甲基化靶向基因组测序方法:extended-representation bisulfite sequencing(XRBS),实现了高灵敏度和微量样本复用检测,使其具有高度可扩展性,并适用于有限的样本和单个细胞基因组CG位点覆盖高达15M以上。

技术优势:

  • 起始量:100ng gDNA;
  • 单碱基分辨率;
  • 多样本的覆盖区域重复性可达到85%-95%、测序区域针对高CpG调控区域,数据利用率更高;
  • 针对性强,成本较低;
  • 基因组CG位点覆盖高达10-15M,显著优于850K芯片。

应用方向:

RRBS/dRRBS/XRBS广泛应用于动物,要求全基因组扫描(覆盖关键调控位点)的:

  • 队列研究、疾病分子分型、临床样本的甲基化 Biomarker 筛选
  • 复杂疾病及肿瘤发病机制等甲基化研究
  • 模式动物发育和疾病甲基化研究
技术参数RRBSDRRBScfDNA-RBSMicro-RBSsc-RBS
原理 MspI酶切+连接接头 多酶切+连接接头 CCGG邻近片段连接接头 CCGG邻近片段连接接头 CCGG邻近片段连接接头
样本要求 1μg 1μg 1ng 1ng 单细胞/1-10个细胞
测序数据量 10G 15G 20G 20G 2G
5XCG位点覆盖 6M 8M 6M 10M 4-8M

易基因科技提供全面的DNA甲基化研究整体解决方案。

参考文献:

Deng Q, Du Y, Wang Z, Chen Y, Wang J, Liang H, Zhang D. Identification and validation of a DNA methylation-driven gene-based prognostic model for clear cell renal cell carcinoma. BMC Genomics. 2023 Jun 7;24(1):307.

 

相关阅读:

oxRRBS+RRBS揭示牦牛下丘脑在神经调节和髓鞘形成中的表观调控机制

一文看懂|简化基因组DNA甲基化测序(RRBS)实验怎么做

一文读懂|精准简化基因组甲基化测序(RRBS+oxRRBS)分析怎么做

表观遗传学与脑卒中:DNA甲基化的作用及衰老对血脑屏障修复的影响

标签:预后,DNA,基因,CpG,甲基化,ccRCC,位点
From: https://www.cnblogs.com/E-GENE/p/17525893.html

相关文章

  • DigiDNA iMazing 2.17.6 2023最新官网中文版免费下载
    DigiDNAiMazing2.17.62023最新官网中文版免费下载 是一款功能强大、令人惊叹的软件,可以快速传输和保存您的音乐、消息、文件和数据。DigiDNAiMazing是任何iPhone、iPodtouch和Android设备的安全备份。因此,用户可以在没有任何iCloud或iTunes的情况下轻松传输照片和视频。保存......
  • DCFW DNAT
    要求一:外网口IP为内网RouterTelnet做端口映射并允许外网用户访问该RouterTelnet服务,映射的端口为TCP8080。实验开始:首先Router需要配置Telnet。然后写一条默认要求可以访问公网。防火墙:#在右上角设置对象用户地址簿。#添加远程登录的服务器ip地址。#在右上角设置服务簿。#新建......
  • 如何统计参考基因组的大小
     以绵羊为例: 001、下载绵羊参考基因组a、 b、 [root@PC1test02]#wgethttps://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/016/772/045/GCF_016772045.1_ARS-UI_Ramb_v2.0/GCF_016772045.1_ARS-UI_Ramb_v2.0_genomic.fna.gz[root@PC1test02]#lsGCF_016772045.1......
  • 植物全基因组选择(GS)研究进展
    目录1全基因组预测准确性的影响因素2提升全基因组预测准确性的主要策略3全基因组选择育种面临的挑战徐扬老师综述得很到位,读完此文基本能对目前植物GS有个大概的了解。全基因组选择(GS)是根据训练群体全基因组上的分子标记基因型和表型之间的关联构建统计模型,进而对表型......
  • 浓盐法提取DNA
    原理核酸和蛋白质在生物体中常以核蛋白(DNP/RNP)的形式存在 DNP能溶于水及高浓度盐溶液,但在0.14M的盐液中解度很低, RNP则可溶于低盐溶液,因此可利用不同浓度的NaCl溶液将其从样品中分别抽提出来DNA和蛋白质,用将抽提得到的DNP用SDS处理可将其分离DNA上清,加入冷乙醇......
  • 题解 P9196【[JOI Open 2016] 销售基因链】
    套路题,来讲个套路解法。如果没有后缀的要求,答案就是trie树的子树内字符串数量。现在加上了后缀,尝试继续使用trie树解决问题。我们建立两棵trie树\(T_1,T_2\),其中\(T_1\)是正常的trie树,\(T_2\)是每个字符串翻转后的trie树。这样的话,包含给定后缀的字符串在\(T_2\)......
  • 比较新冠病毒与蝙蝠和穿山甲冠状病毒基因组/蛋白序列比对,更好地了解COVID-19病原体SAR
    比较新冠病毒与蝙蝠和穿山甲冠状病毒基因组/蛋白序列比对,更好地了解COVID-19病原体SARS-CoV-2的起源与进化作者:王怡然 石育 赵月馨 沈讯摘要:在新冠病毒COVID-19大流行的时代背景下,病毒的遗传信息对于其分类和可追溯性及其致病性至关重要。在全基因组水平上,SARS-CoV-2的序......
  • DNA组成
    DNA(脱氧核糖核酸)是一种生物分子,它存储了生物体的遗传信息。DNA分子由核苷酸组成,每个核苷酸由三个部分组成:一个磷酸基团、一个五碳糖(脱氧核糖)、以及一个氮碱基。DNA中存在四种不同的氮碱基:腺嘌呤(adenine,简称A)、鸟嘌呤(guanine,简称G)、胸腺嘧啶(thymine,简称T)和胞嘧啶(cytosine,简称C)。......
  • 如何提取DNA【原理】
    DNA提取是一种将DNA从生物样本中分离和纯化的过程。下面是一般的DNA提取步骤:选择样本:选择包含DNA的样本,可以是细胞、组织、血液、唾液、植物材料等。细胞破碎:使用物理或化学方法将细胞破碎,以释放DNA。常见的方法包括机械破碎、冻融、酶解或化学溶解。溶解蛋白质:加入蛋白......
  • 【高中生物必修二】第四章 基因的表达
    第一节基因指导蛋白质的合成细胞核的DNA可以帮助合成细胞质的蛋白质,这一过程收到中间物质RNA的帮助。RNA是由核苷酸组成(脱氧核糖的2号H变为OH),碱基从T变为U。RNA一般是单链,比DNA短,因此可以通过核孔从细胞核转移到细胞质。RNA主要分为三种信使(messenger)RNA,或mRNA转运(transfer......